April 1, 2024

Ahmed Saad Sabit, Rice University

The corollary is if also f is conformal transformation of D with conformal inverse f^{-1} , then f(z) = az and |a| = 1. Schwarz Lemma is that $|f(z)| \le 1$ and f(0) = 0 then $|f(z)| \le |z|$ and $|f'(0)| \le 1$.

Apply Schwarz lemma to f and to f^{-1} .

```
|f(z)| = |z|
|(f^{-1})'(0)| \le 1
(ff')'(0) = 1
\therefore |f'(0)| = 1
\therefore f(z) = az
```

Theorem we tried to see in Friday, a conformal transformation of D onto D have the form,

$$f(z) = \omega \phi_a(z)$$

$$\phi_a(z) = \frac{z-a}{1-\overline{a}z}$$

$$w| = 1 \quad |a| < 1$$

Proof is that suppose f is a conformal transformation of D then f(0) = a.

Definition 1. A C^2 function on \mathbb{C} is said harmonic if it satisfies the Laplace's Equation.

 $u_{xx} + u_{yy} = 0$

For us, the prime examples are real parts and imaginary parts of Holomorphic functions.

 $u_x = v_y$ $u_y = -v_x$