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Stereographic Projection of a Sphere on a Plane
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Figure 1: Steregraphic projection (Class 30)
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Go back to solve for p3. We say that this sphere is a Riemann Sphere.

Definition 1. If a function f(z) defined for all large |z| as |z| > R, then define the behavior of f(z) for |z| > R
and z = oo by saying its the same as the behavior of f(1) near z = 0.

if f is defined for all of z then we say that at infinity f has a removable singularity, if and only if f( %) has a
removable singualarity.

We say f has a pole at oo if f (%) has zero at origin.

We say f has essential singularity at oo if f (%) has an essential singularity at the origin.




The Riemann Sphere is the first example of a “complex manifold”, this complex manifold is compact. Other
examples are there.

Holomorphic function on this manifold is called elliptic function.

Function of C of the form,
az+b

Then a,b,c,d € C, and ad — bc # 0. This function is called a Mobius Function with several nice properties related

to 2 X 2 matrices.
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We are not worried about ad — bc in the second part of the above equation, so,

We can say

Extension can be made,

f - g results the matrix,

Now on inverses,
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But now we can think about
az+b
cz+d
at z = co. You get,
a
c

We are going to show, if 3 distinct numbers of CU {oo} are given, and also 3 other distincts are given in order then
31 and only 1 mobius function which maps the first 3 onto the second three in order.



Given 3 distinct numbers, u, v, w € C there exists 1 Mobius function such that,

flw)=0 fv)=o00 f(w)=1

To make this happen,

Also,
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Now if you want to do this,
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Therefore the Mobius functions form a group with group multiplication being composition. These matrices do not
form a group.



