Computational Complex Analysis : : Class 24

March 4, 2024

Ahmed Saad Sabit, Rice University

Continue the discussion on the fact that every non constant holomorphic function is an open function. *f* be holomorphic function then $f(z_0) = w_0$ *N* times. Except at z_0 , *f* is not going to be w_0 . If we use residue theorem and call the circle around z_0 as C_0 then

$$
N = \frac{1}{2\pi i} \int_{C_0} \frac{f'(z)}{f(z) - w_0} \mathrm{d}z
$$

N is the order of 0 here in $f(z) = w_0$, where

$$
f(z) = c(z - z_0)^N + \dots
$$

 $c \neq 0$. If $|w - w_0|$ is sufficiently small then

$$
|f(z) - w| \ge |f(z) - w_0| - |w - w_0| > 0
$$

That integral can be replaced with

$$
1/2\pi i \left(\int_{C_0} \frac{f'(z)}{f(z) - w} \mathrm{d}z \right)
$$

The denom. is a continuous function of *w*. *N* is the number of times here. $f(z)$ has every value close enough to w_0 . f is an open function.

Trivial example $f(z) = z^N$. $z_0 = 0$. Look at $f(z) - \epsilon$.

Now a question, why is it that the close enough to w_0 the *N* values of $f(z) = w z$ close to z_0 are distinct?

Summation of Infinite Series

Summation of infinite series. We are going to look at holomorphic functions f defined on $\mathbb C$ and we hope to calculate $\sum_{-\infty}^{\infty} f(n)$. Starting point

$$
Res(\cot \pi z, n) = \frac{\cos \pi n}{\pi \cos \pi n} = \frac{1}{\pi}
$$

Multiply both sides by

$$
Res(\pi \cot \pi z, n) = 1
$$

f being holomorphic at *n*,

$$
Res(f(z)\pi \cot \pi z, n) = f(n)Res(\pi \cot n\pi) = f(n)
$$

Take the path. On real number line take $N+\frac{1}{2}$ and $-N-\frac{1}{2}$. Then vertically go way up and at the center is origin on the real line. One side would be at *N i* and another at −*N i*. We will take integral over this square with the origin at the center with side length *N*.

$$
\frac{1}{2\pi i} \int_{C_N} f(z)\pi \cot \pi z \, dz = \sum_{n=1}^{\infty} \text{Residues inside.}
$$

So if $N \to \infty$ then $f \to 0$ as assumed, at least quadratically,

$$
|f(z)| \leq \frac{C}{N^2}
$$
 on C_N

So we hope we will be able to utilize the product $f(z)\pi \cot \pi z$ and we are ought to show that,

$$
|\pi \cos \pi z| \leq \text{constant on } C_n
$$

Setting $N\to\infty$ and the integral overall turns into,

$$
0 = \sum_{-\infty}^{\infty} f(n) + \text{Res} (f(z)\pi \cot \pi z, 0)
$$

So we get,

$$
\sum_{-\infty}^{\infty} -\text{Res} \left(f(\pi)\cot \pi z, 0\right)
$$

Small example can be

$$
f(z) = \frac{1}{z^2}
$$

$$
\sum \frac{1}{n^2} = -\text{Res}\left(\frac{\pi \cot \pi z}{z^2}\right) = \frac{\pi^2}{3}
$$

Summing for $n = 0$ to ∞ would be $\frac{\pi^2}{6}$ $\frac{1}{6}$.