Computational Complex Analysis : : Class 23

March 1, 2024

Ahmed Saad Sabit, Rice University

Slight improvement to Rouche's Theorem

Two holomorphic functions f, g around a curve over the domain D. $D \cup C$.

 $|g(z)| \leq |f(z)|$ on C

and f + g is never 0 on C. Then, f + g and f have same number of 0 in D. Proof repeated, want to show,

$$\int_C \frac{(f+g)'}{f+g} - f'/f = 0$$

This is re-written as

$$\int_C \frac{g'f - f'g}{(f+g)f} = \int \frac{\left(\frac{g}{f}\right)'}{1 + \frac{g}{f}}$$

h = g/f, so

$$\int_C \frac{h}{1+h}$$
$$= \int_C \frac{d}{dz} \left(\log(1+h) \right) dz = 0$$

c b'

Before the values of 1 + h couldn't hit the boundary but now they can hit the boundary. But they cannot go around the origin to change the determination of the argument.

Examples

 $3e^z - z$ on $|z| \le 1$ how many 0 are there? On the boundary C, the |z| = 1, and $|3e^z| = 3e^x \pm 3e^{-1} = \frac{3}{e} > 1$ there are no zeroes because e^z has no zeros.

Another example.

 $z^4 - 5z + 1$

How many zeroes are there in the annulus $1 \le |z| \le 2$. Let's see at |z| = 2. So $|z|^4 = 16$ and $|-5z+1| \le 11$, and there looks like 4 zeros. In the smaller |z| = 1, 5z dominates, and there's 1 zero.

Different proof.

$$\frac{1}{2\pi i} \int_C \frac{f' + tg'}{f + tg} \mathrm{d}z = N(t)$$

Definition 1. Suppose f is a function defined on some set in \mathbb{R}^2 with values in some set in \mathbb{R}^2 . We say that f is an *open function* if for every open set G where f is defined f the image of f(G) is also open. $f(x) = e^x$. An open interval in input maps to an open interval in output.

 $f(x) = x^2$ is not open.

Theorem 1. Every non constant holomorphic function is an open function.

Proof. Let z_0 be fixed. Then let $w_0 = f(z_0)$. $f(z_0) - w_0$ is 0 at z_0 . Let's call the order of zero as $N \ge 1$. i.e.

$$f(z) - f(z_0) = (z - z_0)^N g(z)$$

Where $g(z_0) \neq 0$. There is no sequence $z_k \to z_0$ for which $f(z_k) = w_0$. Therefore there should be a circle centered on z_0 on inside which $f = w_0$ only at z_0 .

Problem for self, does an open interval can map to something closed?