Computational Complex Analysis : : Class 21

February 26, 2024

Ahmed Saad Sabit, Rice University

We are going to look at z^{α} . Both quantity are \mathbb{C} .

 $z^{\alpha} = \exp(\alpha \log z)$

Note

 $= \exp\left(\alpha\left(\ln|z| + i\arg z\right)\right) = \exp\left(\alpha\ln|z|\right)\exp\left(i\alpha\arg z\right)$

 $z \neq 0$, it's ambiguous. Since log z is ambiguous. So also we could say z^{α} is exponential of $\alpha \log z$ but we can add

$$z^{\alpha} = \exp\left(\alpha \left(\log z + 2\pi in\right)\right)$$
$$z^{\alpha} = \exp\left(\alpha \log z + 2\pi i\alpha n\right)$$

If α is an integer we have it defined. z^{α} equals as it should.

Let's work on how about $\alpha = 0$. How about 1^{α} ,

$$1^{\alpha} = \exp\left(\alpha i \arg 1\right) = \exp(\alpha i \left(2\pi n\right))$$

It has infinitely many values. α is complex.

Derivative

What about

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(z^{\alpha} \right) = \frac{\mathrm{d}}{\mathrm{d}z} \exp\left(\alpha \log z\right) = \exp\left(\alpha \log z\right) \frac{\alpha}{z}$$
$$= \frac{\alpha}{z} z^{\alpha} = \alpha z^{\alpha - 1}$$

So it holds. For another one,

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} = z^{\alpha} \left(\log z\right)$$

For fun try i^i .

Integral

New computation of an integral. We want to go from 0 to ∞ .

$$\int_0^\infty \frac{x^{\alpha-1}}{x+1}$$

Set $\alpha \in \mathbb{R}$. The condition on α to make the integral finite as $x \to 0$ and $x \to \infty$.

 $1 > \alpha > 0$

Figure 1: Integral around for Class 21

Just confirms the integral will exist. Now I am going to look at the plane. We are interested in the origin, of course, but we want to go to $+\mathbb{R}$. z has singularity at z = -1. We want to use $f(z) = \frac{z^{\alpha-1}}{z+1}$

$$\int_{C} \frac{z^{\alpha-1}}{z+1} dz = 2\pi i \text{ (Residue at -1)} = 2\pi i \frac{(-1)^{\alpha-1}}{1}$$

Then integrand numerator equals

$$\exp\left(\left(\alpha-1\right)\log z\right) = \exp\left(\left(\alpha-1\right)i\arg(-1)\right) = \exp\left(\left(\alpha-1\right)i\pi\right)$$

The details are

$$\int_0^\infty \frac{x^{\alpha-1}}{x+1} dx + \int_\infty^0 \frac{x^{\alpha-1}}{x+1} e^{2\pi i (\alpha-1)}$$

Beware about going around the circle changes the argument by 2π

$$\int \frac{x^{\alpha-1}}{x+1} dx = \frac{2\pi i e^{\pi i (\alpha-1)}}{1 - e^{2\pi i (\alpha-1)}}$$

 $=\pi/\sin\pi\alpha$

Here the ϵ is a radius that will go to zero around 0.

Handy methods to extend this example

Here's one. Take the formula and change dummy variable,

$$\int_0^\infty \frac{x^{\alpha - 1}}{x + 1} \mathrm{d}x = \pi / \sin \pi \alpha$$

Using $x = y^3$,

$$\pi/\sin\alpha\pi = \int_0^\infty \frac{y^{3\alpha-3}}{y^3+1} 3y^2 dy = \int_0^\infty \frac{y^{3\alpha-1} dy}{y^3+1}$$
$$\frac{\pi}{\sqrt{3}/2} = 3\int_0^\infty dy \frac{1}{y^3+1} = \frac{2\pi}{3\sqrt{3}}$$

Differentiate the equation

$$\int_0^\infty \frac{x^{\alpha-1}\ln x}{x+1} dx = \pi \frac{d}{d\alpha} \csc \pi \alpha = -\pi^2 \csc \pi \alpha \cot \pi \alpha$$

So for $\alpha = \frac{1}{2}$,

$$\int_0^\infty \frac{x^{-\frac{1}{2}} \ln x}{x+1} = 0$$

For $x = e^y$, then x goes from 0 to ∞ so y goes from $-\infty$ to ∞ .

$$\int_{-\infty}^{\infty} e^y dy \frac{e^{(\alpha-1)y}}{e^y+1} = \frac{\pi}{\sin \pi \alpha}$$
$$\int_{-\infty}^{\infty} dy \frac{e^{\alpha y}}{e^y+1} = \frac{\pi}{\sin \pi \alpha}$$