Computational Complex Analysis : : Class 15

February 12, 2024

Ahmed Saad Sabit, Rice University

Given some function which is undefined at a point z_0 , we sometimes call z_0 a singularity of the function. We are now going to look at Holomorphic functions f with a singularity at z_0 . We are going to define around z_0 but not $z₀$. And specifically we want to discuss isolated singularities. And that means

Figure 1: function has to be holomorphic around but not at the point

Say $z = \frac{1}{x}$ $\frac{1}{n\pi}$. Then $\sin \frac{1}{z} = 0$. Now look at $\frac{1}{\sin \theta}$ $\sin \frac{1}{2}$ *z* . Every single point other than the origin then becomes an isolated

point that is a singularity.

Now we are going to classify the isolated singularities of holomorphic functions. So we will see that there are three classes. Suppose z_0 is an isolated singularity of f. Here's every where the function is holomorphic other than z_0 . There is a unique Laurent's Expansion of f in a neighborhood of z_0 .

$$
f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n
$$

This converges for $0 < |z - z_0| < r$.

$$
c_n = \frac{1}{2\pi i} \int_C \frac{f(z_0 + s)}{s^{n+1}} ds
$$

Case 01: c_n with $n < 0$ are 0.

$$
f(z) = c_0 + c_1(z - z_0) + \dots
$$

Riemann's Removable singularity theorem, if the modulus of f is bounded near z_0 then removable.

Case 02: At least one c_n is not 0 with $n < 0$. In fact only finitely many c_n are of this nature.

$$
f(z) = c_{-m}/(z - z_0)^m + \dots + c_0 + c_1(z - z_0) + \dots
$$

What is the limit of $|f(z)|$ as $z \to z_0$? Well it goes to infinity because $\frac{C_m}{(z-z_0)^m}$ blows up to infinity. This is called a Pole.

Figure 2: A visual representation of a pole

Case 03: Infinitely many c_n with $n < 0$ are not zero. This is called "Essential Singularity".

Casorati Weierstrass Theorem

Theorem 1. Suppose z_0 is an essential singularity of *f*. Suppose *w* is any complex number or ∞ . Then the conclusion is there exists a sequence

$$
\zeta_1, \zeta_2, \zeta_3, \ldots, \zeta_k
$$

Here as $\lim_{k\to\infty} |\zeta_k| = z_0$ and

If you think of *e* 1 *z* then

Case 01: $w = \infty$. By contradiction assume there is such sequence. Then $f(z)$ has the property that it cannot have very large as $z \to z_0$.

 $\exists C > 0$ such that $|f(z)| < C$ for all *z* close to z_0

From Riemann's Removable Singularity Theorem, z_0 is a removable singularity for *f*.

Case 02: $w \in \mathbb{C}$. Again, if no such sequence exists, then there is a small disk containing w which is never reached by any value of $f(z)$ near z_0 .

 $\lim_{k\to\infty} f(\zeta_k) = w$

Figure 3: z plane and w plane

For $|f(z) - w| \ge a$ for all $|z - z_0| < r$,

$$
\left|\frac{1}{f(z)-w}\right| \frac{1}{a}
$$

*z*₀ is removable singularity $\frac{1}{f(z) - w'}$.

This function extends

$$
\frac{1}{f(z)-w}
$$

is $g(z)$. *g* is holomorphic so it maybe 0 at z_0 . Factor out $(z - z_0)^m$ from *g*:

$$
g(z) = (z - z_0)^m h(z)
$$

And

$$
h(z_0) \neq 0
$$

$$
\frac{1}{f(z) - w} = (z - z_0)^m h(z)
$$

$$
f(z) - w = (z - z_0)^{-m} \frac{1}{h(z)}
$$

Laurent Expansion. It's a pole. Contradiction the essential singularity of f at z_0 . We did all the work to prove it wasn't an essential singularity instead it was a pole.

We are about to start a huge transition: Look at holomorphic function with isolated singularity at z_0 and look at the Laurant Expansion of

$$
f(z) = \cdots c_{-2}(z - z_0)^{-2} + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \cdots
$$

 c −1 is important and it's called the residue of f at z_0 .

c[−]¹

What we are going to use this for is called Residue Theory.