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We showed in the last class that every holomomorphic functions defined on an open set is also analytic.

The theorem about the zeroes of an analytic function. sin 1
z is holomorphic, analytic on the complex plane. But

without the origin. And where are it’s zeros? 1
z = nπ. A power series centered at z0 cannot be 0 on a sequence

converging to z0.

Theorem 1. If f is holomorphic on a connected open set, the zeroes of f cannot have a limit point in the open set.
Proof. By contradiction we consider a sequence

z1, z2, . . . , f(zL) = 0

such that the sequence converge and
lim

n→∞
zn ∈ open set

One limit point of zeroes then epidemically spreads to make the whole sequence become zero.

Commented „Very powerful”. New proof to ex+y = exey.

• Calc 2 gives ex+y = exey.

• Let x ∈ R be fixed and let f(x) = ex+z − exez. For f fixed for R we have 0. We set a theorem f = 0 for
z ∈ C.

• Let z ∈ C be fixed and consider the holomorphic function of w.

ew+z = ewez

The function ex+z − exez = 0 for x ∈ R.

Best version of maximum modulus principle.

Theorem 2. Suppose f is holomorphic on a connected open set and at some z0,

|f(z)| ≤ |f(z0)|

For all z in some neighborhood of z0. Conclusion f is constant. Maximum modulus principle says the disk says is
constant and we can epidemically make it spread. Theorem, suppose f is holomorphic in a connected open set and
|f | has local minimum at some point in the set then f = 0.

Theorem 3. Suppose f is holomorphic on all of C. And suppose that the limit

lim
z→∞

|f(z)| is ∞

We just say the function grows with radius. Now set f(z) = 0 for some z. I am thinking the origin point doesn’t
matter.
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Proof. Proof by contradiction, suppose, the contradiction would be f(z) is never 0. Then 1
f is holomorphic

on the whole plane. And 1
f and since | 1

f | → 0 as z → ∞, 1/f has a minimum. So 1
f = 0 at some point and

this is a contradiction.

Fundamental Theorem of Algebra

Every polynomial of f(z) of positive degree is zero at some point. Proof f(z) = Czn + . . ..

Another proof of Liouvilles Theorem,
f holomorphic on C

and |f(z)| ≤ M ∀z and f is constant. Assume f is never 0, then 1
f is holomorphic and tends to 0 at infinity.
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