Computational Complex Analysis : : Class 12

February 5, 2024

Ahmed Saad Sabit, Rice University

Maximum Modulus Principle

If f is holomorphic on a connected open set, and if x_0 is in the set, and

 $| f(x) | \leq | f(x_0) |$

for all *x* in the set, then *f* is constant.

Proof was shown in Friday. It's the same one that spread like an epidemic.

Corollary

Suppose f is continuous on a closed bounded set of the complex plane and holomorphic on the interior of that set. Then we know that the modulus of $f(z)$ attains a maximum value $|f(z)|$. Any real value continuous function on a closed bonded set obtains it's minimum value and maximum value (it's a fact of calculus 01 if in one dimension).

Minimum Modulus Principle

Suppose *f* is holomorphic on a connected open open set and $|f|$ attains its minimum value at z_0 :

|*f*(*z*)| ≥ |*f*(*z*0)| ∀*z*

If $|f(z_0)| > 0$ then $\frac{1}{f}$ satisfies the maximal condition. Hence f is constant.

Remark: $|f(z)|$ can attain a minimum value in the set and not be constant $|f(z_0)| = 0$.

Corollary

Similar.

A cool theorem

Theorem 1. Every holomorphic function is analytic.

Proof. Assume f is holomorphic on an open set, and let z_0 be a point in that set. Consider a region and a point z_0 , and draw circle centered at z_0 of positive radius that is still contained in the open set. Any small one

that doesn't hit the boundary. Call the circle as γ centered at z_0 . Fact known is the taylor series looks like for

$$
g(z) = \sum_{n=1}^{\infty} c_n (z - z_0)^n
$$

Where $c_n = \frac{g^{(n)}(z_0)}{n!}$. We will use the Cauchy Integral Theorem

$$
f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(s)}{s - z} \mathrm{d}s
$$

Call *z* such that $|z - z_0| < r$. We have seen

$$
f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(s)}{(s-z)^{n+1}} ds
$$

$$
\frac{1}{s-z} = \frac{1}{(s-z_0) - (z-z_0)}
$$

$$
= \frac{1}{s-z_0} \frac{1}{1 - \frac{z-z_0}{s-z_0}}
$$

Geometric Series

$$
\frac{1}{s - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{s - z_0} \right)^n
$$

$$
\frac{1}{s - z_0} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(s - z_0)^{n+1}}
$$

Therefore the first thing to do is to move the summation symbol outside.

$$
\frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\gamma} \frac{f(s)(z - z_0)^n}{(s - z_0)^{n+1}} ds
$$

$$
= \frac{1}{\pi 2i} \sum_{n=0}^{\infty} (z - z_0)^n \int_{\gamma} \frac{f(s)}{(s - z_0)^{n+1}} ds
$$

