Computational Complex Analysis : : Class 07

January 24, 2024

Ahmed Saad Sabit, Rice University

Let’s start with a power series
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And this has f(z0) = ap. And Y~ ;a,0" = ag(0)™. A good way of writing the series is instead ag+ o, an(2—20)".

Let’s have a derivative,
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The taylor series of f centered at zg is
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Theorem 1. Suppose f(z) power series > - a,(z — z9)™ with R > 0, suppose 3 sequence of points € C converging

to zp so that f() =0 at every one of these points. Then of course f(zp) =0 and f =0 V|z — 29| < R.

Proof. Proof by contradiction, suppose f = 0 is false, there will be smallest k such that a; # 0.
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From continuity we cannot have a zero series shown in the third bracket. O

1 Changing Center of Convergence
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Figure 1: converging to a center point for a series

This can be written exactly like a summation,
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Setting the point of convergence at —3.
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Theorem 2. Let D be an open connected subset of the complex plane C. Suppose f is defined on D and is
differentiable on every point of D. Suppose (radical assumption) the derivative is always zero for all on D. The

conclusion is, f is constant.
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2 Logarithm

Consider the function
f(z) =log(l - z)

near z = 0, log is differentiable but an argument is needed. If z — 1, we will be near where log 0 might appear. So
unit disk, use principle value of log(1 — z). If the first disk was centered at z = 0, we have another disk at z = 1.

We can use the principle argument for 1 — z. This is differentiable for |z| < 1.
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Figure 2: changing the center of convergence

Try to integrate,
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We can see C =0, <—= z=0.
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Radius of convergence of > | 22 — 1. z — 1 we get harmonic series that tries to blow up.
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The series and the equation are both valid if |z] < 1 except for z = 1.

2.1 Regarding next class ”Friday”

o Line Integral (212 Ref)

e Green’s Theorem
o Amazing Results (Monday), for instance Cauchy’s Integral Theorem. I need to read at home lol

Frank Jones: “I can’t resist to say what the result is”.



