Honors Linear Algebra : : Class 05

January 25, 2024

Ahmed Saad Sabit, Rice University

1 Exercises 2C

(8)

Suppose v_1, v_2, \ldots, v_m are linearly independent. Dude please use vector notations. $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_m$ are linearly independent. Suppose \vec{w} is a vector too. Prove that

dim(span ${\{\vec{v}_1 + \vec{w}, \vec{v}_2 + \vec{w}, \vec{v}_3 + \vec{w}, \dots, \vec{v}_m + \vec{w}\}}$) ≥ *m* − 1

(15) V_1, V_2, V_3 subspaces. Such that

 $\dim V_1 + \dim V_2 + \dim V_3 > 2 \dim V$

Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$

(19) Prove or give a counter example.

 $\dim(V_1) + \dim(V_2) + \dim(V_3) = \dim(V_1 + V_2 + V_3) + \dim(V_1 \cap V_2) + \dim(V_2 \cap V_3) + \dim(V_1 \cap V_3) - \dim(V_1 \cap V_2 \cap V_3)$

 \implies Let's take \mathbb{R}^2 , *V*₁: x-axis, *V*₂: y-axis, *V*₃: $x = y$. Sum of their three dimension is 3. 3 = 2 + 0 + 0 + 0 - 0

(20) True version of 19.

2 Exercises 3A

(16) Suppose *V* is a finite dimensional vector space and the dim $V \geq 2$. Prove their exists linear operators $S, T \in \mathcal{L}(V)$ such that their product,

 $ST \neq TS$

Example: there are two vectors \vec{v} and \vec{w} which are linearly independent. So there will be a basis v, w, \ldots . So all the vectors in *V* have the form,

$$
c_1\vec{v}+c_2\vec{w}+\cdots
$$

Every vector is uniquely determined by saying what these vector coefficients are. $S(V)$ be defined such that,

$$
S(\vec{v}) = \vec{v}
$$

$$
S(\vec{w}) = \vec{0}
$$

$$
T(\vec{v}) = 0
$$

$$
T(\vec{w}) = \vec{w}
$$

Let's compute *ST* and *TS*.

$$
ST(\vec{v})=S(T(\vec{v}))=S(0)=0
$$

$$
TS(\vec{v}) = T(S(\vec{v})) = T(v) = 0
$$

$$
ST(\vec{w}) = S(T(\vec{w})) = S(\vec{v})
$$

$$
TS(\vec{w}) = T(0) = 0
$$

(11) *V* is a finite dimensional. $T \in \mathcal{L}(v)$. That means *T* maps to itself. And *T* commutes with every $S \in \mathcal{L}(v)$. $TS = ST$, then prove *T* is a scalar multiple of the identity.

Remark: "I already knew this result for *n* × *n* matrices. And I have loved assigning it as Homework".

For all $f \in \mathcal{L}(V, \mathbb{F})$, which is not 0. I.E \vec{v} such that $f(\vec{v}) \neq 0$. Proof: Use a basis for $V : \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and $\vec{x} = \sum_{n=1}^{n} c_n \vec{v}_n.$

 $f(\vec{x}) = c_1$

The set of all $\mathcal{L}(V, \mathbb{F})$ is called the dual space of *V*. Define $S \in \mathcal{L}(v)$ and $S(x) = f(x)v$ $ST = TS$,

$$
ST(x) = S(T(x)) = f(T(x))V
$$

$$
TS(x) = T(S(x)) = T(f(x)v) = f(x)T(v)
$$

$$
f(x)T(v) = f(T(x)))v
$$

$$
f(x) \neq 0
$$

$$
T(v) = \frac{f(T(x))}{f(x)} v
$$

3 3B Null Space and Ranges

3.11 Null Space

Definition 1. Let $T \in \mathcal{L}(V, W)$. The null space of $T = \{v \in V | T(v) = 0\} = \text{null}(T)$

Fact: The null space of *T* is a subspace of *T*. It's a subset because

$$
T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w}) = 0
$$

Hence $\vec{v} + \vec{w} \in \text{null}(T)$. Whatever from the subspace I put in *T* I get 0.

 $\text{Range}(T) = \{T(v)|v \in V\}$

Definition 2. *T* is injective if the equation $T(\vec{v}_1) = T(\vec{v}_2) \implies \vec{v}_1 = \vec{v}_2$

Proof: $T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1) - T(\vec{v}_2) = 0$, so

 $\therefore v_1 - v_2 \in \text{null}(T)$

T is injective if and only if $null(T)$ is $\{0\}$.

Definition 3. *T* is surjective if range $(T) = W$.

4 Fundamental Theorem of Linear Algebra

 $dim(V) = dim(null(T)) + dim(range(T))$