Honors Linear Algebra : : Class 05

January 25, 2024

Ahmed Saad Sabit, Rice University

1 Exercises 2C

(8)

Suppose v_1, v_2, \ldots, v_m are linearly independent. Dude please use vector notations. $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_m$ are linearly independent. Suppose \vec{w} is a vector too. Prove that

 $\dim(\operatorname{span}\{\vec{v}_1 + \vec{w}, \vec{v}_2 + \vec{w}, \vec{v}_3 + \vec{w}, \dots, \vec{v}_m + \vec{w}\}) \ge m - 1$

(15) V_1, V_2, V_3 subspaces. Such that

 $\dim V_1 + \dim V_2 + \dim V_3 > 2 \dim V$

Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$

(19) Prove or give a counter example.

 $\dim(V_1) + \dim(V_2) + \dim(V_3) = \dim(V_1 + V_2 + V_3) + \dim(V_1 \cap V_2) + \dim(V_2 \cap V_3) + \dim(V_1 \cap V_3) - \dim(V_1 \cap V_2 \cap V_3) + \dim(V_1 \cap V_2) + \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2) + \dim(V_2 \cap V_3) + \dim(V_1 \cap V_3) + (\dim(V_1 \cap V_3) + \dim(V_1 \cap V_3)) + (\dim(V_1 \cap V_3) + \dim(V_1 \cap V_3) + (\dim(V_1 \cap V_3)) + (\dim(V_1 \cap V_3) + (\dim(V_1 \cap V_3)) + ((\dim(V_1 \cap V_3))) + ((\dim(V_1 \cap$

 \implies Let's take \mathbb{R}^2 , V_1 : x-axis, V_2 : y-axis, V_3 : x = y. Sum of their three dimension is 3. 3 = 2 + 0 + 0 + 0 - 0

(20) True version of 19.

2 Exercises 3A

(16) Suppose V is a finite dimensional vector space and the dim $V \ge 2$. Prove their exists linear operators $S, T \in \mathcal{L}(V)$ such that their product,

 $ST \neq TS$

Example: there are two vectors \vec{v} and \vec{w} which are linearly independent. So there will be a basis v, w, \ldots So all the vectors in V have the form,

$$c_1\vec{v}+c_2\vec{w}+\cdots$$

Every vector is uniquely determined by saying what these vector coefficients are. S(V) be defined such that,

$$S(\vec{v}) = \vec{v}$$
$$S(\vec{w}) = \vec{0}$$
$$T(\vec{v}) = 0$$
$$T(\vec{w}) = \vec{w}$$

Let's compute ST and TS.

$$ST(\vec{v}) = S(T(\vec{v})) = S(0) = 0$$

$$TS(\vec{v}) = T(S(\vec{v})) = T(v) = 0$$
$$ST(\vec{w}) = S(T(\vec{w})) = S(\vec{v})$$
$$TS(\vec{w}) = T(0) = 0$$

(11) V is a finite dimensional. $T \in \mathcal{L}(v)$. That means T maps to itself. And T commutes with every $S \in \mathcal{L}(v)$. TS = ST, then prove T is a scalar multiple of the identity.

Remark: "I already knew this result for $n \times n$ matrices. And I have loved assigning it as Homework".

For all $f \in \mathcal{L}(V, \mathbb{F})$, which is not 0. I.E \vec{v} such that $f(\vec{v}) \neq 0$. Proof: Use a basis for $V : \vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ and $\vec{x} = \sum_{n=1}^n c_n \vec{v}_n$.

 $f(\vec{x}) = c_1$

The set of all $\mathcal{L}(V, \mathbb{F})$ is called the dual space of V. Define $S \in \mathcal{L}(v)$ and S(x) = f(x)v ST = TS,

$$ST(x) = S(T(x)) = f(T(x))V$$
$$TS(x) = T(S(x)) = T(f(x)v) = f(x)T(v)$$
$$f(x)T(v) = f(T(x)))v$$
$$f(x) \neq 0$$
$$T(v) = \frac{f(T(x))}{f(x)}v$$

3 3B Null Space and Ranges

3.11 Null Space

Definition 1. Let $T \in \mathcal{L}(V, W)$. The null space of $T = \{v \in V | T(v) = 0\} = \text{null}(T)$

Fact: The null space of T is a subspace of T. It's a subset because

$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w}) = 0$$

Hence $\vec{v} + \vec{w} \in \text{null}(T)$. Whatever from the subspace I put in T I get 0.

 $\operatorname{Range}(T) = \{T(v) | v \in V\}$

Definition 2. T is injective if the equation $T(\vec{v}_1) = T(\vec{v}_2) \implies \vec{v}_1 = \vec{v}_2$

Proof: $T(\vec{v}_1 - \vec{v}_2) = T(\vec{v}_1) - T(\vec{v}_2) = 0$, so

$$\therefore v_1 - v_2 \in \operatorname{null}(T)$$

T is injective if and only if null(T) is $\{0\}$.

Definition 3. T is surjective if range(T) = W.

4 Fundamental Theorem of Linear Algebra

$$\dim(V) = \dim(\operatorname{null}(T)) + \dim(\operatorname{range}(T))$$