Honors Linear Algebra : : Class 03

January 18, 2024

Ahmed Saad Sabit, Rice University

1 Finite Dimensional Vector Spaces

Finitely many vectors spanning over a space makes the Vector Space Finite dimensional.

Definition 1. Spanning Set:

Theorem 1. Linear Dependence Lemma: Suppose v_1, \ldots, v_m is a linearly dependent list of vectors in the vector space V. Then there exists v_k such that $v_k \in span(v_1, \ldots, v_n)$, and $span(v_1, \ldots, v_m) = span(v_1, \ldots, v_m)$, without having v_k)

Theorem 2. Then length of any linearly independent list is less than or equal to the length of any spanning list. **Proof.** Let's prove it through induction. Namely, suppose linearly independent list of m vectors and spanning list of n vectors, assuming a contradiction n < m.

$$n = 4, m = 5$$

Linearly independent vectors $v_1, v, 2, v_3, v_4, v_5$. Spanning vectors w_1, w_2, w_3, w_4 . Technique is we adjoin a vector u_1 into w_1, w_2, w_3, w_4 . We can can remove w_4 and the system will still span, u_1, w_1, w_2, w_3 by Lemma. u_1, u_2, u_3, w_1 still spans.

Definition 2. Let V be a finite dimensional vector space. A basis for V is a list which is both linearly independent and spanning.

An observation is in this case the length of the basis for V is independent of the choice of the basis. Then length is called the dimension of V. Examples of dimension: Here \mathbb{P}_n is the set of polynomials of degree $\leq n$.

Vector Space	Dimension
\mathbb{R}^n	n
\mathbb{C}^n	n
\mathbb{P}_n	n+1
$V\oplus W$	$\dim(V) + \dim(W)$

Theorem 3. 2.30: Let V have a spanning set w_1, w_2, \ldots, w_n . This spanning set contains a basis for the vector space.

Proof. When can I not use w_1 for my linearly independent set? If it's stupid, if $w_1 = 0$, then don't use it. If $w_1 = 0$, delete it and go on. If not zero, choose it! So my first element of linearly independent set,

 w_1

If w_2 is a multiple of w_1 , I better not use it. $w_2 \neq aw_1$. Then we pick w_3 to not be a linear combination of

 w_1, w_2 and keep going. And eventually we will get the result, which is a spanning list w_1, w_2, \ldots, w_n . By the process they are linearly independent.

We can also have a reverse theorem,

Theorem 4. Every linearly independent list extends to a basis.

Theorem 5. If V is a finite dimensional vector space and U is a subspace of V, then, U is finite dimensional. Kind of crazy this needs a proof so I won't go into that - Frank Jones, 2024.

Theorem 6. V be a finite dimension. $U \subset V$. Then, there exists, another subspace such that $W \subset V$ such that $U \oplus W$ is V.

Proof. Choose a basis for $U: w_1, w_2, \ldots$ In the usual way, extend the list to get a basis for the vector space. We will have $w_1, \ldots, w_n, u_1, w_n$ will form basis for U and u_n will form basis for W.

Theorem 7. 2.42 V is finite dimensional. A spanning set of the right length is automatically a basis. An independent list of the correct length is also a basis.

Theorem 8. 2.42 Let V_1 , V_2 be subspaces of a finite dimensional vector space. Then we can form $V_1 \cap V_2$, and we can form $V_1 + V_2$. These have dimensions,

$$\dim(V_1 + V_2) + \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2$$

Proof. Axler is proper

2 Section 1C Problem 12

Problem 1. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspace contains the other. In that case $V_1 \cup V_2$ is simply V.

Union of three subspaces is a subspace if one of the three contains the other two.

3 Soul less problem given soul

Problem 2. Derivation of formula for $\sum_{k=1}^{n} k^2$

Solution. Start with
$$\sum_{k=1}^{n} k^3$$
 (bro!)
$$\sum_{1}^{n} k^3 = n^3 + \sum_{1}^{n-1} k^3 = n^3 + \sum_{k=1}^{n} (k-1)^3 = n^3 + \sum_{k=1}^{n} (k^3 - 3k^2 + 3k - 1)$$

The $\sum_{k=1}^{n} k^3$ cancels both side.

$$0 = n^{3} + \sum_{k=1}^{n} (-3k^{2} + 3k - 1)$$

Turns out

$$3\sum_{k=1}^{n} k^2 = n^3 + \sum_{k=1}^{n} (3k-1)$$

Using the idea of Arithmatic progression, we get,

$$= n^{3} + \frac{3n^{2} + n}{2} = \frac{2n^{3} + 3n^{2} + n}{2}$$
$$\sum_{n=1}^{n} n^{2} = \frac{n(2n^{2} + 3n + 1)}{2}$$

6

Proves,

4 Home Reading

I have found this chapter to be a of tremendous confusion because nothing here makes sense to me. I will re-read this whole chapter from the beginning and note them down here.

Introduction to Finite Dimensional Vector Spaces

Some key points we are about to get blessed with are

• Linear Combinations of Lists of Vectors

Whoa whoa wait that's mouthful. So what I understand, that you can have a random circus of vectors

$$(\vec{s}, \vec{t}, \vec{u}, \vec{p}, \vec{i}, \vec{d}), (\vec{s}, \vec{p}, \vec{a}, \vec{c}, \vec{e})$$

We have to list of random vectors up there, now they can get into combinations.

• Basis

These kids are small enough to be **independent** but big enough that their **linear combinations** fill up the entire space. Okay makes a lot of sense. You can literally have any random vector in \mathbb{R}^3 just from combining (1,0,0), (0,1,0), (0,0,1). Let's say you a vector (4,9,2). Then you need to

$$4(1,0,0) + 9(0,1,0) + 2(0,0,1) = (4,9,2)$$

Fair.

Span

Definition 3. Linear Combination: Let's have a list of vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \ldots$ in the same space V, then a possible linear combination is

$$\vec{m} = a_1 \vec{v}_1 + \ldots + a_n \vec{v}_n$$

 \vec{m} is a linear combination of that vector list above.

For sake of example, let's make a vector list, (1,0), (3,2), (4,1). A linear combination of this vector can be

 $\vec{t} = 5(1,0) + 8(3,2) - 2(4,1) = (5,0) + (24,16) - (8,2) = (21,14)$

So we just showed for this list (21, 14) is a valid linear combination.

Definition 4. Span: The set that contains all the possible linear combinations of a list of vectors v_1, v_2, \ldots is called the span of the list. We can have any value of a_i here,

$$\operatorname{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots) = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \ldots : a_1, a_2, \ldots \in \mathbb{F}$$

We have to tediously put all the linear combinations of a list of vectors to get this specific set. Any linear combination of a list of vector is a member of the span. I like to think in this way. Say we have a few vectors (1,0), (3,3). So the linear combination 5(1,0) + 6(3,3) is a member of the span((1,0), (3,3))

I am trying to get this into my mind straight that "span is the set of all linear combinations of a vector-list".

Problem 3. This is not a math problem. This is an actual goddamn problem I am suffering with. So there is a theorem The span of a list of vectors in V is the **smallest** subspace containing all the vectors in the list. I want a contrast, can we have a subspace that is not the smallest?

But wait, do we know what a subspace is (for real Sabit you are asking this to yourself now?).