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Definition 1. A Vector Space is a set V along with an addition on V and a scalar multiplication on V such
that the following properties hold

• commutativity: u + v = v + u if u, v ∈ V .

• associativity: (u + v) + w = u + (v + w) and (ab)v = a(bv) for all u, v, w ∈ V and for all a, b ∈ F.

• additive identity: There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .

• additive inverse: For every v ∈ V , there exists w ∈ V such that v + w = 0.

• multiplicative identity: 1v = v for all v ∈ V .

• distributive properties: a(v + u) = au + av and (a + b)v = av + bv for all a, b ∈ F and all u, v ∈ V .

Definition 2. A set U is the subspace of V if it includes additive identity {0}, and has a closure. Which
can be said,

• 0 ∈ U

• u, w ∈ U then u + w ∈ U

• a ∈ F and u ∈ U , then au ∈ U

A good example is to look at R3, let’s consider all the vectors that have the form,

v⃗ =

 a
0

−a


where a ∈ R. Does the all possible v⃗ build a subspace?

Let’s consider each of the cases. It must have a 0 and it must follow closure. First condition is easy to see, for
a = 0, we have v⃗ = (0, 0, 0) which is the zero. Now, for closure, let’s take two vectors v⃗ and p⃗ that has the form
(a, 0, −a).

v⃗ + p⃗ =

 a
0

−a

 +

 b
0

−b

 =

 a + b
0

− (a + b)


We wanted the vectors to have the form of (a, 0, −a), and the addition of two random vectors turns out to have
the same exact form (a + b, 0, −(a + b)). Second condition seems to be satisfied.

Now the third condition is pretty easy to see, if we multiply any number c (which can be complex), then,

cv⃗ = c

 a
0

−a

 =

 ca
0

−ca


Still the same form, third condition is solved, we have a successful vector space!

To recap, our subspace is set of all vectors such that,

U = {(x, 0, −x) : x ∈ F}
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The vector space is by the way,
R3 = V = {(x, y, z) : x, y, z ∈ F}

Hi!

Figure 1: Test diagram for Linear Algebra

1 Principle of Mathematical Induction

Let P (a) be a statement indexed by positive integers n ∈ N . Suppose, P (1) is true. This is called the Base
Case.

• Suppose P (1) is true. (Base)

• If P (k) is true, then P (k + 1) is true. (Inductive step)

Then P (n) is true for all n ∈ N . You can prove infinitely many statements to be true. But you don’t need to
prove each one by one. So you try to prove at least one of them, and then you can prove that if P (k) is true,
then P (1 + k) is true.

Problem 1. Prove.
P (n) : 0 + 1 + 2 + . . . + n = n(n + 1)

2
for all n ≥ 0.

Solution. Base case P (0) = 0 is true. Suppose P (k) is true. Then,

P (k + 1) = 0 + 1 + . . . + k + (k + 1) = P (k) + (k + 1) = k(k + 1)
2 + (k + 1) = (k + 1)(k + 2)

2

As we assumed P (k) as true, then for P (k + 1), we have to add that to P (k) formula. Because it held up
for the next one so this statement is proved.
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Problem 2. Prove.
12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6

Solution. Let’s get the base case.
P (1) = 1

It is true.
Let’s see P (n) and assume that it is true. (Inductive assumption) Let’s try P (n + 1), which is,

P (n + 1) = P (n) + (n + 1)2 = n(n + 1)(2n + 1)
6 + (n + 1)2

Ah! Algebra only! If you do it, you just need to show that equals

P (n + 1) = (n + 1)((n + 1) + 1)(2(n + 1) + 1)
6

2 Sum of Subspaces (Axler. 1C)

V is a vector space. And we have subspaces U1, U2, U3, · · · , Un. Now,
n0∑

n=1
Un = {v1 + v2 + · · · + vn|vk ∈ Uk}

It’s the sum of all possible vectors the subspaces offer.

U1

U2

v1

v2

Figure 2: Addition of Subspaces
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3 Direct Sums ⊕

Definition 3. Assume U1, U2, U3, . . . are subspaces of V . Then the subspace
∑n0

n Un is called a direct sum
if every v ∈

∑
Un equals,

v = u1 + u2 + · · · + un

Then we say that is a direct sum. The notation,

v = u1 ⊕ u2 ⊕ · · ·

Let’s say that we have three subspaces,
U1 = {(t, 0, 0)}

U2 = {(0, t, 0)}

U3 = {(0, 0, t)}

Now for x ∈ R3,
x = (x1, 0, 0) + (0, x2, 0) + (0, 0, x3)

This is a direct sum,
R3 = U1 ⊕ U2 ⊕ U3

Another example,
U1 = (t, s, 0)

U2 = (t, 0, s)

Now if we define R3 where x = (x1, x2, x3) = c1(t, s, 0) + c2(t′, 0, s′), then,

x1 = c1t + c2t′

x2 = c1s

x3 = c2s′.

This is a sum where R3 is a sum but not direct sum U1 + U2.

Theorem 1. Condition for a direct sum.

V = U1 + · · · + Un

This sum is direct if and only if there is only one way to write the origin {0}

{0} = v1 + · · · + vn

Where vk ∈ Uk implies v1 = v2 = vn = 0.

Proof. Every vector in V can be written in a unique way as a sum of vectors from U1 to Un. In particular
the origin can be written in a unique way, one way is to use the 0, but because this is a direct sum, that is
the only way to do that.
But say a vector can be written in two ways in the sum (it’s not direct sum). So,

v⃗ =
∑

u⃗n =
∑

u⃗′
n

If this is a direct sum then only possible way to do this is when u⃗n = u⃗′
n, and then the origin can be written

as,
0⃗ =

∑
(u⃗n − u⃗′

n) = 0
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4 Ch2 Review

Definition 4. v1, . . . , v2 in V is linearly independent if,

a1v1 + . . . + anvn = 0

then a1 = . . . = an = 0. They are linearly dependent if and only if they don’t satisfy above condition
(linear independence).

So if you can pull up a sum like that without all the an being 0 then you just got yourself a linearly dependent
system.

Theorem 2. The linear dependence Lemma (TODO) Suppose v1, v2, . . . , vn in V are linearly dependent,
then ∃ an equation, a1v1 + . . . + anvn not all ak = 0.

Let’s choose the last possible ak so that it is not zero.

ajvj = −a1v1 − . . . − aj−1vj−1

vj = −a1

aj
v1 − . . . − aj−1

aj
vj−1

So there exists j such that vj is a linear combination of the others. Consider,

span(v1, v2, v3, . . . , vj)

But vj is the combination of the others already, so,

= span(v1, v2, . . . , vk)

So the span didn’t change though I threw away the term. We can more efficiently calculate the span.

Lemma: Anything you prove in the middle of proving something bigger.

∞∑
n=1

anzn
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F⃗ = m⃗a =
∑∞

n=1 π2
i

Figure 3: diagram
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