Honors Multivariable Calculus : : Class 33

April 1, 2024

Ahmed Saad Sabit, Rice University

The 212 definition of scalar surface integral. Say that is in \mathbb{R}^3 . Let there be a function $f: \mathbb{R}^3 \to \mathbb{R}$. Then,

$$\iint_S f \, \mathrm{d}S$$

is "defined" using Riemann Sums. Break S into pieces. For each piece take a value of f on that piece. So the integral is going to be the small area times the function. And then add that up. That gives you a Riemann sum and consider the number of pieces goes to infinity.

A use of this is that integrating 1 like $\iint 1 \, dS$ gives the total surface area. More generally, if δ is a per area density, then it gives the total. The average of f is

$$\frac{\iint f \,\mathrm{d}S}{\iint \mathrm{d}S}$$

Definition 1. $S \subset \mathbb{R}^3$ is a parametrized C^1 surface if there exists

 $T:D\to \mathbb{R}^3$

and $D \subset \mathbb{R}^2$ has non empty interior such that T is C_1 , the image of T is S and T is injective other than a set of content zero.

Here if S is a compact C_1 parametrized surface in \mathbb{R}^3 with parametrization $T: D \to \mathbb{R}^3$ then define $\iint_S f \, \mathrm{d}S$ to be just

$$\begin{aligned} \iint_{D} f \cdot T \text{ (change of coordinate)} \\ \iint_{D} f \cdot T \left| \frac{\partial T}{\partial u} \cdot \frac{\partial T}{\partial v} \right| \end{aligned}$$

Let's take a

$$\{(x,y,z): z=x^2+y^2\,\&\, z\leq 4\}$$

Let's set f(x, y, z) = z and $\iint_S f \, dS$, let's set

$$u = r \quad \text{and} \quad v = \theta$$
$$x = u \cos v$$
$$y = u \sin v$$
$$z = x^2 + y^2 = u^2$$
$$T(u, v) = (u \cos v, u \sin v, u^2)$$
$$0 \le u \le 2$$
$$0 \le v \le 2\pi$$

$$\iint f \, \mathrm{d}S = \int_{[0,2] \times [0,2\pi]} u^2 \sqrt{2u^4 + u^2} \, \mathrm{d}u \, \mathrm{d}v$$

Another type of parametrization,

$$T(u,v) = (u,v,u^2 + v^2)$$

Then this becomes,

$$\iint_{D} (u^{2} + v^{2}) \left| \frac{\partial T}{\partial u} \times \frac{\partial T}{\partial v} \right| \, \mathrm{d}u \, \mathrm{d}v$$
$$\iint_{D} (u^{2} + v^{2}) \sqrt{4u^{2} + 4v^{2} + 1} \, \mathrm{d}u \, \mathrm{d}v$$

Here D is a disk of radius 2.

Vector Field

Every point in space is a vector.

 $\vec{F}:\mathbb{R}^n\to\mathbb{R}^n$

Inputs are thought of as points and outputs are thought of as arrows. An easy example,

$$F(x,y) = \langle 1,3 \rangle$$