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We talked specifically about two things,

And then the volume of the hypersphere,

Here v, is the surface area of the unit sphere at R".
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So what we have discussed,
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We can say,
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There is not anti-derivative without the limit. We want to instead define,
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T(1/2) = \/S(k)
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Drawing a circle of C'(k) and C(v/2 - k), we know S(k) is between the two, which says,

Why is this any better,

So it just showed,

Now define,
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Setting v = —r2 now,



So, C(k) goes to m and C(kv/2) also goes to 7 so we get S(k) to go to 7 too.
Hence, S(k) = 7 and from there,

To integrate over a hypersphere
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From here we come to conclude,
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Hence we get,
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Computing this,
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