Honors Multivariable Calculus: : Class 31

March 27, 2024

Ahmed Saad Sabit, Rice University

We talked specifically about two things,

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

And then the volume of the hypersphere,

$$V_n(R) = \frac{1}{n}R^n v_n$$

Here v_n is the surface area of the unit sphere at \mathbb{R}^n .

 $\Gamma(1/2)$

So what we have discussed,

$$\Gamma(1/2) = \int_{-\infty}^{\infty} e^{-u^2} du$$

We can say,

$$\lim_{k \to \infty} \int_{-k}^{k} e^{-u^2} \mathrm{d}u$$

There is not anti-derivative without the limit. We want to instead define,

$$S(k) = \int_{-k}^{k} \int_{-k}^{k} e^{-x^2 - y^2} \mathrm{d}y \mathrm{d}x$$

Why is this any better,

$$= \int_{-k}^{k} \int_{-k}^{k} e^{-x^{2}} e^{-y^{2}} dy dx = \int_{-k}^{k} e^{-x^{2}} \left(\int_{-k}^{k} e^{-y^{2}} dy \right) dx$$
$$= \left(\int_{-k}^{k} e^{-y^{2}} dy \right) \left(\int_{-k}^{k} e^{-x^{2}} dx \right)$$

So it just showed,

$$\Gamma(1/2) = \sqrt{S(k)}$$

Now define,

$$C(k) = \int_{\text{disk of radius k cent. 0}} e^{-x^2-y^2} = \int_{\theta=0}^{2\pi} \int_{r=0}^k e^{-r^2} r \mathrm{d}r \mathrm{d}\theta$$

Drawing a circle of C(k) and $C(\sqrt{2} \cdot k)$, we know S(k) is between the two, which says,

$$C(k) < S(k) < C(k\sqrt{2})$$

Setting $u = -r^2$ now,

$$= \int_0^{2\pi} \left(e^u \left(-\frac{1}{2} \right) \right)_{r=0; u=-0}^{r=k; u=-k^2} d\theta$$
$$= -\frac{1}{2} \int_0^{2\pi} \left(e^{-k^2} - 1 \right) d\theta = -\pi \left(e^{-k^2} - 1 \right)$$

So, C(k) goes to π and $C(k\sqrt{2})$ also goes to π so we get S(k) to go to π too.

Hence, $S(k) = \pi$ and from there,

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}$$

$$\Gamma\left(\frac{5}{2}\right) = \frac{3}{2}\Gamma\left(\frac{3}{2}\right) = \frac{3}{4}\sqrt{\pi}$$

$$\Gamma\left(\frac{7}{2}\right) = \frac{5}{2}\Gamma\left(\frac{5}{2}\right) = \frac{15}{8}\sqrt{\pi}$$

Now we are interested on doing this over \mathbb{R}^n .

$$e^{-x_1^2 - x_2^2 \cdots - x_n^2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \left(\int_{-\infty}^{\infty} e^{-x_1^2 - x_2^2 - x_3^2 \cdots - x_n^2} dx_1 \right) \cdots dx_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-x_1^2} dx_1 \right) (\cdots) \left(\int_{-\infty}^{\infty} e^{-x_n^2} dx_n \right)$$

To integrate over a hypersphere

$$\int_{\rho=0}^{\infty} \int_{\theta_{1}} \cdots \int_{\theta_{2}} e^{-\rho^{2}} \rho^{n-1} (\text{trig stuffs from jacobian}) d\theta \cdots d\theta d\rho$$

$$= \left(\int_{0}^{\infty} e^{-\rho^{2}} \rho^{n-1} d\rho \right) \left(\int \int \int \int \int \int (\text{trig stuffs}) d\theta \right)$$

$$t = \rho^{2} \quad dt = 2\rho d\rho \quad dt (1/2) = \rho d\rho$$

$$\int_{0}^{\infty} e^{-\rho^{2}} \rho^{n-1} d\rho = \int_{0}^{\infty} e^{-t} \rho^{n-2} \rho d\rho d\rho = \int_{0}^{\infty} e^{-t} t^{\frac{n}{2} - 1} \frac{1}{2} dt = \frac{1}{2} \Gamma \left(\frac{n}{2} \right)$$

From here we come to conclude,

$$\sqrt{\pi}^n = \frac{1}{2}\Gamma(n/2)v_n$$

Hence we get,

$$v_n = \frac{\sqrt{\pi}^n}{\frac{1}{2}\Gamma\left(\frac{n}{2}\right)}$$

$$V_n(R) = \frac{R^n}{n} \frac{\sqrt{\pi}^n}{\frac{1}{2}\Gamma\left(\frac{n}{2}\right)}$$

$$V_n(R) = \frac{R^n\left(\sqrt{\pi}^n\right)}{\Gamma\left(\frac{n}{2} + 1\right)}$$

Computing this,

$$V_4(R) = \frac{\pi^2}{2}R^4$$
$$V_5(R) = \frac{8\pi^2}{15}R^5$$