Honors Multivariable Calculus : : Class 25

March 6, 2024

Ahmed Saad Sabit, Rice University

For all *a* and for all *b* there exist a *c* is a (statement *S* involving *a, b, c*). For all *b* there exists *c* such that for all *a* Which statement might be easier to prove here? Statement 2 is harder to prove.

The difficulty in $\epsilon - \delta$ is choosing the δ . What is the statement f is continuous on D of the form? Most likely statement 1. That's for because $\forall x$ and $\forall \epsilon > 0$ there exists $\exists \delta > 0$ such that - something.

Definition 1. *f* is uniformly continuous on *D* if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\forall x \in D$ if $|\vec{y} - \vec{x}| < \delta$ then $|f(\vec{y}) - f(\vec{x})| < \epsilon$.

An example can be $f(x) = 4x$ to be uniform continuous.

Proof. Let $\epsilon > 0$ and choose $\delta = \frac{\epsilon}{4}$, then if $x, y \in \mathbb{R}$ with $|y - x| < \delta = \frac{\epsilon}{4}$, we have,

$$
|f(y) - f(x)| = |4y - 4x| = 4|y - x| < \epsilon
$$

Another example, $f(x) = x^2$ is not a uniformly continuous on R. Note about the Δx for Δf , moving to the left, we need narrower and narrower tolerance around *x* that ∆*x* gets smaller. So there is not a single *δ* that can be universally okay.

Proof. We want to find one counter example which will totally negate the statement. Choose $\epsilon = 1$. Then we are trying to claim that there is no δ that works. So for any $\delta > 0$ we can find an x and choose it such that *x* is greater than $\frac{1}{\delta}$. Then what happens when we take $y = x + \frac{\delta}{2}$ then we get

$$
f(y) - f(x) = \left(x + \frac{\delta}{2}\right)^2 - x^2 = \delta x + \frac{\delta^2}{4} > \delta x > \epsilon
$$

Theorem 1. If *D* is compact and *f* is continuous on *D* then *f* is a uniformly continuous on *D*. This is a happy fact. **Proof.** Analysis \Box

Theorem 2. Proposition: If *f* is continuous on a box *D* then *f* is integrable on *D*. Here $f : D \to \mathbb{R}$ and $D \in \mathbb{R}^n$. **Proof.** Let $\epsilon > 0$. Define $\epsilon' = \frac{\epsilon}{\text{vol of } D}$. Uniform continuity of f on D means there exists an $\delta > 0$ that $\vec{y}, \vec{x} \in D$ with $|\vec{y} - \vec{x}| < \delta$ then $|f(\vec{y}) - f(\vec{x})| < \epsilon'$. Pick a partition *P* such that \vec{x}, \vec{y} are in the same piece *P* then $|\vec{y} - \vec{x}| < \delta$.

So on each piece the max of *f* subtracted from *min* value of *f* :

$$
U(f, P) - L(f, P) < \sum_{\text{pieces}} (\text{vol of piece})(\text{max value of f on piece - min value of f on piece}) <
$$

$$
< \sum_{\text{pieces}} \, (\text{vol of piece}) \epsilon' = \text{vol}(D) \epsilon' = e
$$

 \Box

Before we move to non-boxes, what about f is non continuous?

Definition 2. A set $X \subset \mathbb{R}^n$ has content 0 or content zero if $\forall \epsilon > 0$ ∃finitely many boxes B_1, \ldots, B_k such that x ⊂ ∪ B_i and

$$
\sum_{i=1}^{k} \text{vol}(B_i) < \varepsilon
$$

⊂ ∪ ∩ ∈

Theorem 3. Proposition: If the set of the discontinuities of *f* on the box *D* is content zero, then *f* is integrable on *D*. When we are trying to integrate functions it's important to remember that our functions are bounded.

Proof. *D* and we are not assuming *f* is continuous. In the box *D* imagine some line where *X* is the set of discontinuities. Choose *P* partition such that the pieces of *P* that intersect *X* that have total volumen *<* (fill in the blank later). (by *X*′ *s* content zero.)

f is uniformly continuous outside of those boxes, choose *P* also such that if \vec{y}, \vec{x} are in a single piece of outside of these boxes then $|f(\vec{y}) - f(\vec{x})| <$ (fill in box).

Then

$$
U(f, P) - L(f, P) = \sum_{n=1}^{\infty} (vol \text{ of piece})(min - max)
$$

$$
= \sum_{\text{piece that contain X}} (vol) |\text{min} - \text{max}| + \sum_{\text{others}} (vol)|\text{min} - \text{max}|
$$

Now the boxes around the discontinuous part can be taken really small though the min - max would not be ssmall.

$$
\langle \sum_{\text{pieces containing } X} (\text{vol})(\text{overall max - over min of f on D}) + \sum_{\text{other pieces}} (\text{vol}) \epsilon'
$$

$$
< (\text{overall max - overall min}) \epsilon'' + (\text{vol}D)e' < \frac{\epsilon}{2} + \frac{\epsilon}{2}
$$