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For all a and for all b there exist a c is a (statement S involving a, b, c ). For all b there exists c such that for all a
Which statement might be easier to prove here? Statement 2 is harder to prove.

The difficulty in ϵ − δ is choosing the δ. What is the statement f is continuous on D of the form? Most likely
statement 1. That’s for because ∀x and ∀ϵ > 0 there exists ∃δ > 0 such that - something.

Definition 1. f is uniformly continuous on D if ∀ϵ > 0, ∃δ > 0 such that ∀x ∈ D if |y⃗ − x⃗| < δ then
|f(y⃗) − f(x⃗)| < ϵ.

An example can be f(x) = 4x to be uniform continuous.
Proof. Let ϵ > 0 and choose δ = ϵ

4 , then if x, y ∈ R with |y − x| < δ = ϵ
4 , we have,

|f(y) − f(x)| = |4y − 4x| = 4|y − x| < ϵ

Another example, f(x) = x2 is not a uniformly continuous on R. Note about the ∆x for ∆f , moving to the left,
we need narrower and narrower tolerance around x that ∆x gets smaller. So there is not a single δ that can be
universally okay.

Proof. We want to find one counter example which will totally negate the statement.
Choose ϵ = 1. Then we are trying to claim that there is no δ that works. So for any δ > 0 we can find an x
and choose it such that x is greater than 1

δ . Then what happens when we take y = x + δ
2 then we get

f(y) − f(x) =
(

x + δ

2

)2
− x2 = δx + δ2

4 > δx > ϵ

Theorem 1. If D is compact and f is continuous on D then f is a uniformly continuous on D. This is a happy
fact.

Proof. Analysis

Theorem 2. Proposition: If f is continuous on a box D then f is integrable on D. Here f : D → R and D ∈ Rn.
Proof. Let ϵ > 0. Define ϵ′ = ϵ

vol of D . Uniform continuity of f on D means there exists an δ > 0 that
y⃗, x⃗ ∈ D with |y⃗ − x⃗| < δ then |f(y⃗) − f(x⃗)| < ϵ′. Pick a partition P such that x⃗, y⃗ are in the same piece P
then |y⃗ − x⃗| < δ.
So on each piece the max of f subtracted from min value of f :

U(f, P ) − L(f, P ) <
∑

pieces
(vol of piece)(max value of f on piece - min value of f on piece) <

1



<
∑

pieces
(vol of piece)ϵ′ = vol(D)ϵ′ = e

Before we move to non-boxes, what about f is non continuous?

Definition 2. A set X ⊂ Rn has content 0 or content zero if ∀ϵ > 0 ∃finitely many boxes B1, . . . , Bk such that
x ⊂ ∪Bi and

k∑
i=1

vol(Bi) < ε

⊂ ∪ ∩ ∈

Theorem 3. Proposition: If the set of the discontinuities of f on the box D is content zero, then f is integrable on
D. When we are trying to integrate functions it’s important to remember that our functions are bounded.

Proof. D and we are not assuming f is continuous. In the box D imagine some line where X is the set
of discontinuities. Choose P partition such that the pieces of P that intersect X that have total volumen
< (fill in the blank later). (by X ′s content zero.)
f is uniformly continuous outside of those boxes, choose P also such that if y⃗, x⃗ are in a single piece of outside
of these boxes then |f(y⃗) − f(x⃗)| < (fill in box).
Then

U(f, P ) − L(f, P ) =
∞∑

n=1
(vol of piece)(min - max)

=
∑

piece that contain X
(vol) |min - max| +

∑
others

(vol)|min - max|

Now the boxes around the discontinuous part can be taken really small though the min - max would not be
ssmall.

<
∑

pieces containing X

(vol)(overall max - over min of f on D) +
∑

other pieces
(vol) ϵ′

< (overall max - overall min) ϵ′′ + (volD)e′ <
ϵ

2 + ϵ

2

2


