Honors Multivariable Calculus : : Class 23

March 1, 2024

Ahmed Saad Sabit, Rice University

INTEGRATION: (lesgoo)

Math 212 understanding,

 $D \subset \mathbb{R}^n$

and let's be in $f: D \to \mathbb{R}$. The integral

$$\int_D f =$$

 $\int_{[1,5]} 3x^2 \mathrm{d}x$ is defined via Riemann Sums

We just going to think we are summing the area of a bunch of rectangles. So think about breaking the system into Pieces.

 $\int_D f$ is break D into pieces and each piece take "volume of the piece in n-dim" and multiply "value of f on piece". This is the informal but useful understanding of what the integration is doing. What does integral measure?

signed area, which is the volume of between the graph of f in \mathbb{R}^{n+1} and domain $D \times \{0\} \subset \mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$

If f is density like stuffs, the integral gives the mass. Defining δ density r position, moment of inertia

$$\int_D \delta r^2 = \text{Moment of Inertia}$$

Integrals might give average. Take N values of f each $\frac{1}{N}$ of D.

$$\frac{\sum_{n=1}^{N} f(x_i)}{N} = \frac{\sum_{n=1}^{N} f(x_i) \frac{\text{area of } D}{N}}{\text{area of } D} \approx \int_{D} f$$

So $\int_D f$ are *n* dimensional volume of *D*, gives average of *f*.

Usage of Inverse Functions using Implicit Theorem

Y'all know about Polar Coordinates.

$$(x, y) = (r \cos \theta, r \sin \theta) = F(r, \theta)$$

Hence, $F : \mathbb{R}^2 \to \mathbb{R}^2$.

Definition 1. Given $C^1 \mathbb{F} : \mathbb{R}^n \to \mathbb{R}^n$ with $\vec{a} \in \mathbb{R}^n$ where $dF_{\vec{a}}$ is invertible. Then F is locally a bijection, or, there are open sets U where $a \in U$ such that $f(\vec{a}) \in V$ such that F restricted to U is a bijection between U

and V. The inverse G sending V to U is C^1 , and

$$dG_{f(\vec{a})} = (dF_{\vec{a}})^{-1}$$

Proof. Let $F = (f_1, \ldots, f_n)$ and $f_i : \mathbb{R}^n \to \mathbb{R}$. Consider \mathbb{R}^{2n} consists of x_1, \ldots, x_n and y_1, \ldots, y_n . And we got

$$y_1 = f_1(x_1, \dots, x_n)$$
$$y_n = f_n(x_1, \dots, x_n)$$

These functions show the graph of f_n . Apply implicit function theorem,

 $y_1 - f_1(x_1, \dots, x_n) = 0$

$$g_n(x_1, \dots, x_n, y_1, \dots, y_n) = y_n - f_n(x_1, \dots, x_n) = 0$$

To apply Implicit function theorem, we need mx of

$$\frac{\partial g_i}{\partial x_i}$$

to be invertible. This is the same as mx of $-\frac{\partial f_i}{\partial x_j}$ at \vec{a} . This is $-dF_{\vec{a}}$.