Honors Multivariable Calculus : : Class 22

February 28, 2024

Ahmed Saad Sabit, Rice University

Definition 1. Given *m* functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ where $F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ $\vec{a} \in \mathbb{R}^n$, where $F(\vec{a}) = \vec{c}$. Relabel $x_{n-m+1} \ldots x_n$ as z_1, \ldots, z_m . Then near \vec{a} , the constraint $F(\vec{x}) = \vec{c}$ defines z_1, \ldots, z_m as implicit functions of x_1, \ldots, x_{n-m} if $\begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \frac{\partial f_2}{\partial z_1} & \cdots \\ \vdots & & \\ & \vdots & & \\ & & & \\ \vdots & & & \\ &$

Example

Intersection of $x^2 + y^2 + z^2 = 3$ and x + 2y + 3z = 6 near $\vec{a} = (1, 1, 1)$. Can we get y, z as implicit function of x near \vec{a} ? $f_1 = \text{first one}$

$$f_{2} = \text{second one}$$

$$f_{2} = \text{second one}$$

$$F = (f_{1}, f_{2})$$

$$F(\vec{a}) = (3, 6) = \vec{c}$$

$$\begin{pmatrix} \partial_{2}f_{1} & \partial_{2}f_{2} \\ \partial_{3}f_{1} & \partial_{3}f_{2} \end{pmatrix} (\vec{a}) = \begin{pmatrix} 2y & 2 \\ 2z & 3 \end{pmatrix} (1, 1, 1) = \begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}$$

This is inververtible. So by the implicit function theorem we can treat y, z as some function h(x) near 1, 1, 1 (x, y, z). To calculate $\frac{dy}{dx}$ and $\frac{dz}{dx}$.

$$y = h(x)$$
 and $z = j(x)$

Near the given point hte equation is going to hold,

$$x^{2} + h(x)^{2} + j(x)^{2} = 3$$

 $x + 2h(x) + 3j(x) = 6$

Taking a derivative,

$$2x + 2h(x)h'(x) + 2j(x)j'(x) = 0$$
$$1 + 2h'(x) + 3j'(x) = 0$$

At (x, y, z) = (1, 1, 1) that becomes,

$$2 + 2h' + 2j' = 0$$

 $1 = 2h' + 3j' = 0$

We just need to solve this system of equation for h' and j'. That same thing can be written as

$$\begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} h' \\ j' \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

This is only going to work out well if you plot it.

General Lagrange Multipliers

Constraint is given by

$$g_1(\vec{x}) = c_1$$

$$g_2(\vec{x}) = c_2$$

$$g_m(\vec{x}) = c_m$$
So $G = (g_1, \dots, g_m)$. Here
$$G : \mathbb{R}^n \to \mathbb{R}^m$$

And let's say that X is $G^{-1}(\{\vec{c}\})$. We want to optimize $f : \mathbb{R}^n \to \mathbb{R}$ constrained to X. The idea again is that you know there are going to be certain special, f is not going to be maximized, unless something interesting happens. What's the interesting thing?

Given $\vec{a} \in X$, if f is differentiable at \vec{a} .

 $\{\nabla g_i(\vec{a})\}$ is linearly independent

And $\nabla f(\vec{a})$ is not in span of $\{\nabla g_i(\vec{a})\}$. Then f is not max or min at \vec{a} when restricted to X.

INtuitive Justification

Draw the picture of a sphere getting intersected by a plane. Sphere is $g_1 = c_1$ and $g_2 = c_2$ is plane. Intersection is our X.

$$X = G^{-1}(c_1, c_2)$$

Let's pick a point \vec{a} right there on the intersection disk. If we are moving along the intersection then g_1, g_2 are constant. And so any tangent direction along the X are \perp to $\nabla g_i(\vec{a})$. Tangent directions along $X \subset \nabla g_i^{\perp} \forall i$.

$$X \subset \bigcap_{i=1}^m \nabla g_i^\perp$$

Implicit function theorem says

$$X = \cap \nabla g_i^{\perp}$$

If ∇f not in span of $\{\nabla g_i\}$ then $\exists \text{some} \vec{v} \cap \nabla g_i^{\perp}$ where \vec{v} is not perp to f. Going aong that direction will increase or decrease f.

Think about ∇g_1 and ∇g_2 and they are perp to \vec{t} tangent vector. ∇f is not in their span so it can't either be perp to \vec{t} . This diagram is necessary.

Subject of the constraints example

$$x^2 + y^2 + z^2 = 3$$
$$x + 2y + 3z = 6$$

What is the maximum and minimum value of x?

$$f(x, y, z) = x$$

Are we guarenteed we are going to have a maximum or minimum? f is continous function. Constraint is the X which is compact.

Note Given $\vec{a} \in X$, if f is differentiable at \vec{a} .

$$\{\nabla g_i(\vec{a})\}$$
 is linearly independent

And $\nabla f(\vec{a})$ is not in span of $\{\nabla g_i(\vec{a})\}$. Then f is not max or min at \vec{a} when restricted to X.

These conditions are given in the note.

$$\nabla g_1 = (2x, 2y, 2z)$$
$$\nabla g_2 = (1, 2, 3)$$

Are they every linearly dependent? well yes but they will be linearly dependent on points that are not on X. Linearly dependent if $(x, y, z) = \kappa(1, 2, 3)$

$$\kappa^2 + (2\kappa)^2 + (3\kappa)^2 = 3$$

But we get $\kappa = \pm \sqrt{\frac{3}{14}}$. This point is outside of our required place of interest.

$$(x, y, z) = \pm \left(\sqrt{\frac{3}{14}}, 2\sqrt{\frac{3}{14}}, 3\sqrt{\frac{3}{14}}\right)$$

We don't have κ range within X (this sentence makes no sense lol). So, where is ∇f in span of $\nabla g_1, \nabla g_2$ are?

$$\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$$

(1,0,0) = $\lambda_1 (2x, 2y, 2z) + \lambda_2 (1, 2, 3)$
1 = $\lambda_1 2x + \lambda_2$
0 = $\lambda_1 2y + 2\lambda_2$
0 = $\lambda_1 2z + 3\lambda_2$
3 = $x^2 + y^2 + z^2$ (constraint 1)
6 = $x + 2y + 3z$ (constraint 2)