Honors Multivariable Calculus : : Class 22

February 28, 2024

Ahmed Saad Sabit, Rice University

Definition 1. Given *m* functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ where

$$
F = (f_1, \ldots, f_m) : \mathbb{R}^n \to \mathbb{R}^m
$$

 $\vec{a} \in \mathbb{R}^n$, where $F(\vec{a}) = \vec{c}$. Relabel $x_{n-m+1} \ldots x_n$ as z_1, \ldots, z_m . Then near \vec{a} , the constraint

 $F(\vec{x}) = \vec{c}$

defines z_1, \ldots, z_m as implicit functions of x_1, \ldots, x_{n-m} if

$$
\begin{pmatrix}\n\frac{\partial f_1}{\partial z_1} & \frac{\partial f_2}{\partial z_1} & \cdots \\
\vdots & & \vdots \\
\frac{\partial f_a}{\partial z_b}\n\end{pmatrix}
$$

Example

Intersection of $x^2 + y^2 + z^2 = 3$ and $x + 2y + 3z = 6$ near $\vec{a} = (1, 1, 1)$. Can we get *y*, *z* as implicit function of *x* near \vec{a} ? f_1 = first one

$$
f_2 = \text{second one}
$$

$$
F = (f_1, f_2)
$$

$$
F(\vec{a}) = (3, 6) = \vec{c}
$$

$$
\begin{pmatrix} \partial_2 f_1 & \partial_2 f_2 \\ \partial_3 f_1 & \partial_3 f_2 \end{pmatrix} (\vec{a}) = \begin{pmatrix} 2y & 2 \\ 2z & 3 \end{pmatrix} (1, 1, 1) = \begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}
$$

This is inververtible. So by the implicit function theorem we can treat y, z as some function $h(x)$ near 1, 1, 1 (x, y, z) . To calculate $\frac{dy}{dx}$ and $\frac{dz}{dx}$.

$$
y = h(x)
$$
 and $z = j(x)$

Near the given point hte equation is going to hold,

$$
x^{2} + h(x)^{2} + j(x)^{2} = 3
$$

$$
x + 2h(x) + 3j(x) = 6
$$

Taking a derivative,

$$
2x + 2h(x)h'(x) + 2j(x)j'(x) = 0
$$

$$
1 + 2h'(x) + 3j'(x) = 0
$$

At $(x, y, z) = (1, 1, 1)$ that becomes,

$$
2 + 2h' + 2j' = 0
$$

$$
1 = 2h' + 3j' = 0
$$

We just need to solve this system of equation for h' and j' . That same thing can be written as

$$
\begin{pmatrix} 2 & 2 \ 2 & 3 \end{pmatrix} \begin{pmatrix} h' \\ j' \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}
$$

This is only going to work out well if you plot it.

General Lagrange Multipliers

Constraint is given by

$$
g_1(\vec{x}) = c_1
$$

\n
$$
g_2(\vec{x}) = c_2
$$

\n
$$
g_m(\vec{x}) = c_m
$$

\nSo $G = (g_1, \dots, g_m)$. Here
\n
$$
G: \mathbb{R}^n \to \mathbb{R}^m
$$

And let's say that *X* is $G^{-1}(\{\vec{c}\})$. We want to optimize $f : \mathbb{R}^n \to \mathbb{R}$ constrained to *X*. The idea again is that you know there are going to be certain special, *f* is not going to be maximized, unless something interesting happens. What's the interesting thing?

Given $\vec{a} \in X$, if f is differentiable at \vec{a} .

 $\{\nabla g_i(\vec{a})\}\$ is linearly independent

And $\nabla f(\vec{a})$ is not in span of $\{\nabla g_i(\vec{a})\}\)$. Then *f* is not max or min at \vec{a} when restricted to *X*.

INtuitive Justification

Draw the picture of a sphere getting intersected by a plane. Sphere is $g_1 = c_1$ and $g_2 = c_2$ is plane. Intersection is our *X*.

$$
X = G^{-1}(c_1, c_2)
$$

Let's pick a point \vec{a} right there on the intersection disk. If we are moving along the intersection then g_1, g_2 are constant. And so any tangent direction along the *X* are \perp to $\nabla g_i(\vec{a})$. Tangent directions along $X \subset \nabla g_i^{\perp} \forall i$.

$$
X\subset \bigcap_{i=1}^m \nabla g_i^\perp
$$

Implicit function theorem says

$$
X = \cap \nabla g_i^{\perp}
$$

If ∇f not in span of $\{\nabla g_i\}$ then \exists some $\vec{v} \cap \nabla g_i^{\perp}$ where \vec{v} is not perp to f . Going aong that direction will increase or decrease *f*.

Think about ∇g_1 and ∇g_2 and they are perp to \vec{t} tangent vector. ∇f is not in their span so it can't either be perp to \vec{t} . This diagram is necessary.

Subject ot the constraints example

$$
x2 + y2 + z2 = 3
$$

$$
x + 2y + 3z = 6
$$

What is the maximum and minimum value of *x*?

$$
f(x, y, z) = x
$$

Are we guarenteed we are going to have a maximum or minimum? *f* is continous function. Constraint is the *X* which is compact.

Note Given $\vec{a} \in X$, if f is differentiable at \vec{a} .

$$
\{\nabla g_i(\vec{a})\}\
$$
is linearly independent

And $\nabla f(\vec{a})$ is not in span of ${\nabla g_i(\vec{a})}$. Then *f* is not max or min at \vec{a} when restricted to *X*.

These conditions are given in the note.

$$
\nabla g_1 = (2x, 2y, 2z)
$$

$$
\nabla g_2 = (1, 2, 3)
$$

Are they every linearly dependent? well yes but they will be linearly dependent on points that are not on *X*. Linearly dependent if $(x, y, z) = \kappa(1, 2, 3)$

$$
\kappa^2 + (2\kappa)^2 + (3\kappa)^2 = 3
$$

But we get $\kappa = \pm \sqrt{\frac{3}{14}}$. This point is outside of our required place of interest.

$$
(x, y, z) = \pm \left(\sqrt{\frac{3}{14}}, 2\sqrt{\frac{3}{14}}, 3\sqrt{\frac{3}{14}} \right)
$$

We don't have κ range within *X* (this sentence makes no sense lol). So, where is ∇f in span of $\nabla g_1, \nabla g_2$ are?

$$
\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2
$$

(1,0,0) = $\lambda_1 (2x, 2y, 2z) + \lambda_2 (1, 2, 3)$

$$
1 = \lambda_1 2x + \lambda_2
$$

$$
0 = \lambda_1 2y + 2\lambda_2
$$

$$
0 = \lambda_1 2z + 3\lambda_2
$$

$$
3 = x^2 + y^2 + z^2
$$
 (constraint 1)

$$
6 = x + 2y + 3z
$$
 (constraint 2)