Honors Multivariable Calculus : : Class 20

February 23, 2024

Ahmed Saad Sabit, Rice University

Note The focus must be to kind of acquire the content of the class, not just blatantly take notes and shit.

The ball around $f(\vec{a})$ would have both bigger and smaller function values and that is then uninteresting.

Theorem 1. $g: \mathbb{R}^n \to \mathbb{R}$ and C^1 .

$$
X = g^{-1}(\{c\}), \quad \vec{a} \in X
$$

If \vec{a} is uninteresting, for f on X , then $\forall r > 0$, there are points on X within r from \vec{a} where f is bigger and smaller than $f(\vec{a})$

Proof. Recall $p : \mathbb{R} \to X$ is any differentiable curve with point $p(t_0) = \vec{a}$ then $p'(t_0) \perp \nabla g(\vec{a})$. Claim: Every $\vec{v} \in \nabla g(\vec{a})^{\perp}$ is $p'(t_0)$ for some *p* as above. Since $\nabla f(\vec{a}) \neq \lambda \nabla g(\vec{a})$, then $\exists \vec{v} \in \nabla g(\vec{a})^{\perp}$ such that \vec{v} is not perpendicular to $\nabla f(\vec{a})$. By claim $\exists p : \mathbb{R} \to X$ with $p(t) = \vec{a}$ and $p'(t) = \vec{v}$. Consider $j : \mathbb{R} \to \mathbb{R}$. Given by $j(t) = f(p(t))$,

$$
j'(t) = df_{p(t)}(p'(t))
$$

$$
j'(t_0) = df_{p(t_0)}(p'(t_0))
$$

$$
df_{\vec{a}}(\vec{v}) = \nabla f(\vec{a}) \cdot \vec{v} \neq 0
$$

So j is smaller than $j(t_0)$ on one side and bigger than the other.

Example

$$
g(x, y, z) = x^2 + y^2 + z^2
$$

So Let a sphere be

 $g^{-1}(\{1\}) = X$ Let's say there is a point on *X* called $\vec{a} = \frac{1}{\sqrt{3}, \frac{1}{\sqrt{3}, \frac{1}{\sqrt{3}}}}$ lol silly, 3

$$
\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

Attached diagram.

1 Implicit function theorem

$$
x^3 + xy + e^y = 2
$$

Globally *y* is not a function of *x*. *y* is implicitly a function of *x*, near 1,0 if things turns out nicely, we can see a little piece of the curve and looks like y is a function of x and we treat it like

$$
x^3 + xh(x) + e^{h(x)} = 2
$$

 \Box

Then we differentiate and we treat $y = h(x)$ as an implicit function only for that point.

Theorem 2. (Baby version) $F : \mathbb{R}^n \to \mathbb{R}$ and C^1 . Take a point \vec{a} in \mathbb{R}^n where $F(\vec{a}) = C$. We are going to suppose that $\partial F/\partial x_n$ at \vec{a} is not 0. Then well

 x_n is an implicit function of x_1, \ldots, x_{n-1}

given the equation $F(x_1, \ldots, x_n) = C$. This is near (a_1, \ldots, a_{n-1}) .

Setting $\vec{a} = (a_1, \ldots, a_n)$ we have an open $U \subset R^{n-1}$ around \vec{a} and $V \subset \mathbb{R}^n$ around \vec{a} . And

 $h: U \to \mathbb{R}$

Such that $V \cap F^{-1}(\lbrace C \rbrace)$ is the graph of *h*. I.E there is a $(b_1, \ldots, b_n) \in V \cap F^{-1}(\lbrace C \rbrace) \iff$

$$
b_n = h(b_1, \ldots, b_{n-1})
$$