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Note The focus must be to kind of acquire the content of the class, not just blatantly take notes and shit.

The ball around f (⃗a) would have both bigger and smaller function values and that is then uninteresting.

Theorem 1. g : Rn → R and C1.
X = g−1({c}), a⃗ ∈ X

If a⃗ is uninteresting, for f on X, then ∀r > 0, there are points on X within r from a⃗ where f is bigger and smaller
than f (⃗a)

Proof. Recall p : R → X is any differentiable curve with point p(t0) = a⃗ then p′(t0) ⊥ ∇g(⃗a).
Claim: Every v⃗ ∈ ∇g(⃗a)⊥ is p′(t0) for some p as above.
Since ∇f (⃗a) ̸= λ∇g(⃗a), then ∃v⃗ ∈ ∇g(⃗a)⊥ such that v⃗ is not perpendicular to ∇f (⃗a).
By claim ∃p : R → X with p(t) = a⃗ and p′(t) = v⃗. Consider j : R → R. Given by j(t) = f(p(t)),

j′(t) = dfp(t)(p′(t))

j′(t0) = dfp(t0)(p′(t0))

dfa⃗(v⃗) = ∇f (⃗a) · v⃗ ̸= 0

So j is smaller than j(t0) on one side and bigger than the other.

Example

g(x, y, z) = x2 + y2 + z2

So Let a sphere be
g−1({1}) = X

Let’s say there is a point on X called a⃗ = 1√
3, 1√

3, 1√
3

lol silly,

1√
3

,
1√
3

,
1√
3

Attached diagram.

1 Implicit function theorem

x3 + xy + ey = 2
Globally y is not a function of x. y is implicitly a function of x, near 1, 0 if things turns out nicely, we can see a
little piece of the curve and looks like y is a function of x and we treat it like

x3 + xh(x) + eh(x) = 2
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Then we differentiate and we treat y = h(x) as an implicit function only for that point.

Theorem 2. (Baby version) F : Rn → R and C1. Take a point a⃗ in Rn where F (⃗a) = C. We are going to suppose
that ∂F/∂xn at a⃗ is not 0. Then well

xn is an implicit function of x1, . . . , xn−1

given the equation F (x1, . . . , xn) = C. This is near (a1, . . . , an−1).

Setting a⃗ = (a1, . . . , an) we have an open U ⊂ Rn−1 around a⃗ and V ⊂ Rn around a⃗. And

h : U → R

Such that V ∩ F −1({C}) is the graph of h. I.E there is a (b1, . . . , bn) ∈ V ∩ F −1({C}) ⇐=

bn = h(b1, . . . , bn−1)
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