February 21, 2024

Ahmed Saad Sabit, Rice University

Definition 1. Suppose $g : \mathbb{R}^n \to \mathbb{R}$ is C^1 . Let

X = Level Surface $g^{-1}(\lbrace c \rbrace) = \lbrace \vec{x} \in \mathbb{R}^n : g(\vec{x}) = \vec{c} \rbrace$

Take $f: \mathbb{R}^n \to \mathbb{R}$ and we say that $\vec{a} \in X$ is "interesting" for f on X if any one of the following is

- f not differentiable \vec{a}
- $\nabla g(\vec{a}) = \vec{0}$
- $\nabla f(\vec{a}) = \lambda \nabla g(\vec{a})$ for some scalar λ .

Theorem 1. If $\vec{a} \in X = g^{-1}(\{c\})$ is uninteresting for *X*, then $\forall r > 0$, $\exists \vec{b} \in X$ with $|\vec{b} - \vec{a}| < r$ and $\vec{c} \in X$ with $|\vec{b_2} - \vec{a}| < r$ such that

$$
f(\vec{b_1}) > f(\vec{a}) > f(\vec{b_2})
$$

on *X* \vec{a} isn't a local min/max for f ".

Example

 $f(x) = 4x + 3y$ On $x^2 + y^2 = 1$. Is f ever going to be non differentiable. Now what is g? It's $g(x, y) = x^2 + y^2$ and $X = g^{-1}(\{1\})$. *f* always being differentiable, so

$$
\nabla g = \langle 2x, 2y \rangle
$$

This is never $\vec{0}$ on *X*. So only interesting points are at

$$
\nabla f = \lambda \nabla g
$$

\n
$$
\langle 4, 3 \rangle = \nabla \langle 2x, 2y \rangle
$$

\n
$$
4 = 2\lambda x
$$

\n
$$
3 = 2\lambda y
$$

\nAnd $x^2 + y^2 = 1$. Solve these for interesting points $\frac{4}{3} = \frac{x}{y}$ and
\n
$$
4y = 3x
$$

\n
$$
y = \frac{3}{4}x
$$

\n
$$
x^2 + \frac{9}{16}x^2 = 1
$$

\nSo we can have
\n
$$
2Sx^2 \frac{1}{16} = 1
$$

So we can have

We know
$$
f
$$
 attains its min and max on X since is a cpt and f is continuous. So max at $4/5$, $3/5$ and min at other.

 $x = \pm \frac{4}{5}$ 5 $y = \pm \frac{3}{5}$ 5

 $\frac{1}{16} = 1$

Example

$$
f(x, y, z) = x^2 - y + z
$$

on *X* the unit sphere $x^2 + y^2 + z^2 = 1$, We call that $g(x, y, z)$. So,

 $\nabla g = \langle 2x, 2y, 2z \rangle$ $\nabla f = \langle 2x, -1, 1 \rangle$

Now what we get is, and required to solve λ ,

Gives above either $\lambda = 1$ or $x = 0$.

$$
-1 = \lambda 2y
$$

$$
1 - \lambda 2z
$$

 $2x = \lambda 2x$

$$
1 = \lambda 2z
$$

$$
x^2 + y^2 + z^2 = 1
$$

Case $01 : x = 0$ from there

$$
\frac{-1}{1} = \frac{\lambda 2y}{\lambda 2z}
$$

$$
z = -y
$$

Using this

$$
0^2 + y^2 + (-y)^2 = 1 \implies y = \pm \frac{1}{\sqrt{2}}
$$
 and $z = -\left(\pm \frac{1}{\sqrt{2}}\right)$

Case 02: $\lambda = 1$ then from there we can find

$$
y = -\frac{1}{2}, z = \frac{1}{2}
$$

$$
x^2 + \frac{1}{4} + \frac{1}{4} = 1
$$

$$
x = \pm \frac{1}{\sqrt{2}}
$$

2 more interesting points are

$$
\left(\pm\frac{1}{\sqrt{2}},-\frac{1}{2},\frac{1}{2}\right)
$$

X is compact then we will get min max.