Honors Multivariable Calculus : : Class 17

February 16, 2024

Ahmed Saad Sabit, Rice University

Definition 1. Proposition: If f is differentiable at \vec{a} ut $d\vec{f}_a$ is not not identically zero, then \vec{a} is not a local extremum for \overrightarrow{f} .

Consequently if *f* has a local maximum at \vec{a} , then \vec{a} is a critical point for f . ($df_{\vec{a}} = 0$ for f is differentiable at \vec{a} .) **Proof.** Suppose $df_{\vec{a}}$ is not identially 0. Then $\exists \vec{v} \in \mathbb{R}^n$ such that $df_{\vec{a}}(\vec{v}) \neq 0$.

$$
\lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = D_{\vec{v}}f(\vec{a})
$$

$$
= g'(0)
$$

where $g(t) = f(\vec{a} + t\vec{v})$. So $t = 0$ is a not a locla minimum or maximum for *g*. So $\forall \varepsilon > 0$ let $\varepsilon' = \frac{\varepsilon}{|\vec{v}|}$ We know that $\exists t_1, t_2 \in (-\varepsilon', \varepsilon')$ such that

 $g(t_1) > (g(0)) > g(t_2)$

Since 0 is not a local min or max for *g* so

 $f(\vec{a} + t_1\vec{v}) > f(\vec{a}) > f(\vec{a} + t_2\vec{v})$

 $\vec{a} + t_1 \vec{v}$

Now here,

and

 $\vec{a} + t_2 \vec{v}$

are within the ε of \vec{a} , and f is bigger than that of $f(\vec{a})$ at one of them. Smaller than $f(\vec{a})$ at the other. So \vec{a} is not a local extremum. \Box

Definition 2. Prop: Suppose $f : \mathbb{R}^n \to \mathbb{R}$ and $df_{\vec{a}} = 0$. Then consider the Quadratic Form

$$
Q(\vec{x}) = \vec{x}^t H \vec{x}
$$

Where H is the Hessian Matrix at \vec{a} .

- If Q is positive definite, then f has a local min at \vec{a} .
- If Q is negative definite, then f has a local max at \vec{a} .
- If Q is indefinite, then f has neither a local max or min at \vec{a} .

Proof. Suppose $df_{\vec{a}} = 0$ and H is positive. We know that $f(\vec{a} + \vec{h})$ is $f(\vec{a}) + df_{\vec{a}}(\vec{h}) + \frac{1}{2!}\vec{h}^t H \vec{n} + R_2(\vec{a}, \vec{h})$

$$
f(\vec{a} + \vec{h}) - f(\vec{a}) = \frac{1}{2!} \vec{h}^t H \vec{h} + R_2(\vec{a}, \vec{h})
$$

So the idea is that the difference is basically the left side term in the right of equality. The remainder has to be quite small. So the intuitive idea is a domination. Suppose all eigen values of *H* are positive.

$$
H = PDP^t
$$

 $\vec{j} = P^t \vec{h}$

P orthogonal, Define \vec{j} such that

And

And
\n
$$
= \frac{1}{2!} \vec{j}^t D \vec{j}
$$
\n
$$
h^t H h = h^t P D P^t h
$$
\nWhere $h^t P = j^t$ and $P^t h = j$.
\n
$$
= \frac{1}{2!} (\lambda_1 j_1^2 + \lambda_2 j_2^2 + \ldots + \lambda_n j_n^2) + R_2(\vec{a}, \vec{h})
$$
\n
$$
\geq \frac{1}{2!} (\lambda_n j_1^2 + \ldots + \lambda_n j_n^2) + R_2(\vec{a}, \vec{h})
$$
\n
$$
= \frac{1}{2!} \lambda_n^2 |\vec{j}|^2 + R_2(\vec{a}, \vec{h})
$$
\n
$$
= \frac{\lambda_n}{2!} |h|^2 + R_2(\vec{a}, \vec{h})
$$
\nBut we know that

But we know that

 $|R_2(\vec{a}, \vec{h})| < \frac{\lambda_n}{2!} |h|^2$

Because

$$
\lim_{h \to 0} \frac{R_2}{h^2} = 0
$$

And R_2 is strictly > 0 .

