Honors Multivariable Calculus : : Class 17

February 16, 2024

Ahmed Saad Sabit, Rice University

Definition 1. Proposition: If f is differentiable at \vec{a} ut $d\vec{f_a}$ is not not identically zero, then \vec{a} is not a local extremum for \vec{f} .

Consequently if f has a local maximum at \vec{a} , then \vec{a} is a critical point for f. (d $f_{\vec{a}} = 0$ for f is differentiable at \vec{a} .) **Proof.** Suppose $df_{\vec{a}}$ is not identially 0. Then $\exists \vec{v} \in \mathbb{R}^n$ such that $df_{\vec{a}}(\vec{v}) \neq 0$.

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = D_{\vec{v}}f(\vec{a})$$
$$= g'(0)$$

where $g(t) = f(\vec{a} + t\vec{v})$. So t = 0 is a not a locla minimum or maximum for g. So $\forall \varepsilon > 0$ let $\varepsilon' = \frac{\varepsilon}{|\vec{v}|}$ We know that $\exists t_1, t_2 \in (-\varepsilon', \varepsilon')$ such that

 $g(t_1) > (g(0)) > g(t_2)$

Since 0 is not a local min or max for g so

 $f(\vec{a} + t_1 \vec{v}) > f(\vec{a}) > f(\vec{a} + t_2 \vec{v})$

 $\vec{a} + t_1 \vec{v}$

Now here,

and

 $\vec{a} + t_2 \vec{v}$

are within the ε of \vec{a} . and f is bigger than that of $f(\vec{a})$ at one of them. Smaller than $f(\vec{a})$ at the other. So \vec{a} is not a local extremum.

Definition 2. Prop: Suppose $f : \mathbb{R}^n \to \mathbb{R}$ and $df_{\vec{a}} = 0$. Then consider the Quadratic Form

 $Q(\vec{x}) = \vec{x}^t H \vec{x}$

Where H is the Hessian Matrix at \vec{a} .

- If Q is positive definite, then f has a local min at \vec{a} .
- If Q is negative definite, then f has a local max at \vec{a} .
- If Q is indefinite, then f has neither a local max or min at \vec{a} .

Proof. Suppose $df_{\vec{a}} = 0$ and H is positive. We know that $f(\vec{a} + \vec{h})$ is $f(\vec{a}) + df_{\vec{a}}(\vec{h}) + \frac{1}{2!}\vec{h}^t H \vec{n} + R_2(\vec{a}, \vec{h})$

$$f(\vec{a} + \vec{h}) - f(\vec{a}) = \frac{1}{2!}\vec{h}^t H \vec{h} + R_2(\vec{a}, \vec{h})$$

So the idea is that the difference is basically the left side term in the right of equality. The remainder has to be quite small. So the intuitive idea is a domination. Suppose all eigen values of H are positive.

$$H = PDP^t$$

 $\vec{j}=P^t\vec{h}$

P orthogonal, Define \vec{j} such that

And

And

$$= \frac{1}{2!}\vec{j}^{t}D\vec{j}$$

$$h^{t}Hh = h^{t}PDP^{t}h$$
Where $h^{t}P = j^{t}$ and $P^{t}h = j$.

$$= \frac{1}{2!}j^{t}Dj + R_{2}(\vec{a},\vec{h})$$

$$= \frac{1}{2!}\left(\lambda_{1}j_{1}^{2} + \lambda_{2}j_{2}^{2} + \ldots + \lambda_{n}j_{n}^{2}\right) + R_{2}(\vec{a},\vec{h})$$

$$\geq \frac{1}{2!}(\lambda_{n}j_{1}^{2} + \ldots + \lambda_{n}j_{n}^{2}) + R_{2}(\vec{a},\vec{h})$$

$$= \frac{1}{2!}\lambda_{n}^{2}|\vec{j}|^{2} + R_{2}(\vec{a},\vec{h})$$

$$= \frac{\lambda_{n}}{2!}|h|^{2} + R_{2}(\vec{a},\vec{h})$$
But we know that

$$|R_{2}(\vec{a},\vec{h})| < \frac{\lambda_{n}}{2!}|h|^{2}$$

Because

$$\lim_{h \to 0} \frac{R_2}{h^2} = 0$$

And R_2 is strictly > 0.