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Taylor’s Expansion for Multivarible Functions

1-variable 2nd order Taylor Polynomial z = a is
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This matches the Oth and 1-st derivative of f at a. If z = a
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flath) = f(a) + f'(a)h+ 5 f"(a)h?

When h = 0.
Now we are going to do this for multivariable function,

There are taylor functions that converge but not the function it’s expanding.

Two Variable function
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What about even more terms? We will have additional
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Think about this
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So the k’th order terms for the taylor polynomials for some function f : R™ — R™ are (an outline first, exact one
later)
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If it is centered at @ then @ = (aj,as,...,a,) then replace Z; with &; — @,



How correct is our taylor series?

Single variable
Flath) = F(a) + f'(a)h+ .+ 2 O @b + Re(a, )

Here Ry(a, h) is the remainder of k order.

Facts about Ry: If f is C* near a then
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If f is C¥*+1 then
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Let’s consider the first orders for here with @ = (a1, az) and h = (hy, hy)
fR*"=R
We can’t call it equality unless we have added R(@, )
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f@+ h) = f(@) + dfz(h) + Ry(@, h)

But from the raw definition of the derivative df(;(ﬁ) setting h — 0 we can get
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This will go to zero. For the second order we want,
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The remainder here
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This will go even faster than zero. If f is C3 near @ then Ry(, h) is
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The idea to prove this is to use the one single variable calculus remainders on g(t) = f(@ + ht).
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