Honors Multivariable Calculus : : Class 14

e (

February 8, 2024

Ahmed Saad Sabit, Rice University

For $f : \mathbb{R}^n \to \mathbb{R}$ the first order derivatives are

$$\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}$$

0.0

There are are all \mathbb{R}^n to \mathbb{R} .

Differentiate ∂f_{x_i} with respect to x_j , so

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

In more condensed form

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = (f_{x_i})_x$$

、.

• /

An example can be

$$f(x, y) = x \sin(y - x) + y \sin(x + y) - y$$

$$f_x = \sin(y - x) + x \cos(y - x)(-1) + y \cos(x + y) \cdot 1$$

$$f_y = x \cos(y - x) + \sin(x + y) + y \cos(x + y) \cdot 1 - 1$$

$$f_{xx} = \cos(y - x) (-1) - \cos(y - x) + x \sin(y - x)(-1) - y \sin(x + y)$$

$$f_{yy} = -x \sin(y - x) + \cos(x + y) + \cos(x + y) - y \sin(x + y)$$

$$f_{xy} = \cos(y - x) + x \sin(y - x) + \cos(x + y) - y \sin(x + y)$$

$$f_{yx} = \cos(y - x) + x \sin(y - x) + \cos(x + y) - y \sin(x + y)$$

Clairaut's Theorem

Theorem 1. If f is C^2 , not only the partial derivatives exist but also the function is continuous. So at some point \vec{a} then mixed partials are equal.

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_j}$$

Proof. For simplicity write f as f(x, y). Let

$$\vec{a} = (x_0, y_0)$$

Define

$$S(\Delta x, \Delta y) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - (f(x_0, y_0 + \Delta y) - f(x_0, y_0))$$

Define another function g(x)

$$g(x) = f(x, y_0 + \Delta y) - f(x, y_0)$$

Then

$$S(\Delta x, \Delta y) = g(x_0 + \Delta x) - g(x_0)$$

Using the mean value theorem on G because it is a single variable function, and g is also differentiable because f is differentiable and we have single order and this is going to be

 $=\Delta xg'(c)$ for some c between x_0 and $x_0 + \Delta x$

 $= \Delta x \left(f_x(c, y_0 + \Delta y) - f_x(c, y_0) \right) = \Delta x \left(\Delta y f_{xy}(c, d) \right)$ for some *d* between y_0 and $y_0 + \Delta y$ as Mean Value Theorem So

$$\frac{S(\Delta x, \Delta y)}{\Delta x \Delta y} = f_{xy}(c, d)$$

Here c, d is some coordinate in the rectangle. But as $\Delta x, \Delta y \to 0$ we need $c, d \to 0$ and hence the position become $\vec{a} = (x, y)$. Using continuity

$$f_{xy}(c,d) \to f_{xy}(\vec{a})$$

This is the limit as $\Delta x, \Delta y \to 0$ as $\lim_{\Delta x, \Delta y \to 0} S(\Delta x, \Delta y) / \Delta x \Delta y = f_{xy}(\vec{a})$. We can do the exact same process in the opposite order we can simply form the f_{yx}

Partial differentiation draw a point \vec{a} and extend it two both directions by Δx and Δy , so you have a rectangle of Δx and Δy dimensions.

Taylor Polynomial

Whats the second order Taylor Polynomial for f at x = a?

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

When x is near a. Why is the 2! there? Because we want the second derivative to match the left side of the equation.