Honors Multivariable Calculus : : Class 12

February 5, 2024

Ahmed Saad Sabit, Rice University

Definition 1. $f: D \to \mathbb{R}^m$ and $D \in R^n$ as an open set. We say that f is C^1 on D if all of f-s partial derivatives (first order) exist and are continuous on *D*.

Recall, f, g is $\mathbb{R} \to \mathbb{R}$ and if

$$
h(x) = g(f(x))
$$

then $h'(a) = g'(f(a)) \cdot f'(a)$ For small changes we can show,

$$
\Delta x_1 = f'(a) \mathrm{d}x
$$

$$
\Delta x_2 = g'(f(a)) \Delta x_1
$$

I am thinking about using the linear operator twice.

212 Version of Chain rule is

 $z =$ function of u, v

 u, v = function of x, y

$$
(u, v) = f(x, y)
$$

$$
z = g(u, v) = g(f(x, y))
$$

$$
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}
$$

$$
z = g(u, v)
$$

$$
(u, v) = f(x, y)
$$

 $\mathrm{d} g_{(u_0,v_0)}=1\times 2$ matrix $\mathrm{d} f_{x_0,y_0}=2\times 2$ matrix

The 1×2 matrix is $\left(\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v}\right)$, and the 2×2 above is

$$
\begin{pmatrix}\n\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\n\end{pmatrix}
$$
\n
$$
z = h(x, y) = g(f(x, y))
$$
\n
$$
dh_{(x_0, y_0)} = dg_{(u_0, v_0)} \cdot df_{(x_0, y_0)}
$$

A Good Beispiel for this

Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is C^1 (truly differentiable). Suppose $z = f(x, y)$ and

$$
\frac{\partial z}{\partial x}(5,5) = 2
$$

Figure 1: Map of chain rule for 212

$$
\frac{\partial z}{\partial y}(5,5) = 4
$$

We know how *z* changes now. Let's change to polar coordinates. What is $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$?

$$
(x, y) = p(r, \theta)
$$

We know that

$$
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}
$$

The line in polar makes a coordinate $(5\sqrt{2}, \frac{\pi}{4})$. So,

$$
\left(\frac{\partial z}{\partial r} - \frac{\partial z}{\partial \theta}\right) = df_{(5,5)} \cdot dp_{(5\sqrt{2}, \frac{\pi}{4})}
$$

$$
= \left(2 \quad 4\right) \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}
$$

$$
= \left(2 \quad 4\right) \begin{pmatrix} \frac{\sqrt{2}}{2} & -5 \\ \frac{\sqrt{2}}{2} & 5 \end{pmatrix} = d(f \cdot p)_{(5\sqrt{2}, \pi/4)}
$$

The Gradient

Take $f: \mathbb{R}^n \to \mathbb{R}$ here if *f* is differentiable at \vec{a} then $df_{\vec{a}}$ is a

$$
\begin{pmatrix}\n\frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n}\n\end{pmatrix}
$$
\n
$$
D_{\vec{v}}f(\vec{a}) = \begin{pmatrix}\n\frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n}\n\end{pmatrix} \vec{v}
$$

$$
D_{\vec{v}}f(\vec{a}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \cdot \vec{v}
$$

So we just did a $df_{\vec{a}}^t$ transpose of the original that is in \mathbb{R}^n .

Definition 2. If $f : \mathbb{R}^n \to \mathbb{R}$ then the gradient of f at \vec{a} at \vec{a} in \mathbb{R}^n is

$$
\nabla f(\vec{a}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}
$$

If *f* is differentiable at \vec{a} then $D_{\vec{v}}f(\vec{a})$ is $\nabla f(\vec{a}) \cdot \vec{v}$ for all unit vectors of \vec{v} .

$$
|\nabla(f(\vec{a}))| \cdot |\hat{v}| \cos \theta = |\nabla f(\vec{a})| \cos \theta
$$

Using $\cos \theta$ at max $|\nabla f(\vec{a})|$ is the maximum.

- The largest possible derivative
- Direction is where the derivative is largest
- Let $C = f(\vec{a})$ and then $X = f^{-1}(\{C\})$. Set of all point thats f maps to C. This is called "Leveled" Hypersurface", eg 2

$$
f(x, y, z) = x2 + y2 + z
$$

$$
f(1, 1, 1) = 3
$$

Then $f^{-1}(\{3\})$ level hypersurface for f is set of all points that becomes 3 so that is a sphere. If $p : \mathbb{R} \to \mathbb{R}^n$ is a curve (differentiable) with $p(t) \in X$ for all t and $p'(b) = \vec{a}$ then $f(p(t)) = C$ constantly.

$$
(f(p(t))' = 0
$$

So

$$
df_{p(b)} \cdot p'(b) = 0
$$

$$
\nabla f(p(\vec{b})) \cdot p'(b) = 0
$$

$$
\nabla f(\vec{a}) \cdot p'(b) = 0
$$

Gradient is perpendicular to any curve travelling along the surface on \vec{a} .