Honors Multivariable Calculus : : Class 11

February 2, 2024

Ahmed Saad Sabit, Rice University

Partial derivatives of f at \vec{a} with respect to x_i is

 $D_{e_i} f(\vec{a})$

More common notation is $\frac{\partial f}{\partial x_i}(\vec{a})$ Sometimes you will see

$$
f(x,y)=z
$$

So

$$
\frac{\partial z}{\partial x} = f_x
$$

An example can be $f(x, y) = (\sin y + x^2 e^y, x + 2xy)$ where $f: \mathbb{R}^2 \to \mathbb{R}^2$ and we want $\frac{\partial f}{\partial x}$ at $(2, 0)$? We can do this on the long way so by definition

$$
\lim_{t \to 0} \frac{f(2,0) + t\vec{e}_1 - f(2,0)}{t}
$$

$$
\lim_{t \to 0} \frac{f(2+t,0) - f(2,0)}{t}
$$

$$
\lim_{t \to 0} \frac{\left(2+t+2(2+t)\cdot 0\right) - \left(4\right)}{t}
$$

We have a simple single variable derivative.

$$
\left(\lim_{t\to 0} \frac{(2+t)^2-4}{2+t+2(2+t)0-2}\right)
$$

This just boils down into treating the individual components as individual derivatives.

$$
\frac{\partial f}{\partial x}(2,0) = \begin{pmatrix} 4\\1 \end{pmatrix}
$$

Just doing single variable we can find

$$
\frac{\partial f}{\partial y}(2,0) = \begin{pmatrix} 5\\4 \end{pmatrix}
$$

These are directional derivative along \vec{e}_1 and \vec{e}_2 .

$$
\frac{\partial f}{\partial x}(2,0) = \binom{4}{1} = D_{\vec{e}_1}f(2,0)
$$

$$
\frac{\partial f}{\partial y}(2,0) = \binom{5}{4} = D_{\vec{e}_2}f(2,0)
$$

If *f* is differentiable and $df(2, 0)$ is represented by matrix *M* then

$$
M = \begin{pmatrix} 4 & 5 \\ 1 & 4 \end{pmatrix}
$$

$$
df_{(2,0)}(\vec{e_1}) = M\vec{e_1}
$$

$$
df_{(2,0)}(\vec{e_2}) = M\vec{e_2}
$$

If *f* is differentiable at \vec{a} then *Mx* for $df_{\vec{a}}$ is

 $\left(\frac{\partial f}{\partial x_1}(\vec{a})\dots\frac{\partial f}{\partial x_n}(\vec{a})\right)$

Consider the vertical spanning of this matrix too. We have columns here beware! If $f(\vec{a})$ is $(f_1(\vec{a}), f_2(\vec{a}), \ldots, f_m(\vec{a}))$ if *f* is differentiable at \vec{a} then

$$
df_{\vec{a}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\vec{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(\vec{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\vec{a}) \end{pmatrix}
$$

The *ij* entry is $\frac{\partial f_i}{\partial x_j}(\vec{a})$ So *f* is differentiable at \vec{a} , then this means *f* has directional derivatives in all directions of \vec{a} , then this also means f has partial derivatives along all n basis directions.

$$
f(x,y) = \sqrt{|xy|}
$$

Does not have directional derivatives (wait how why)

Partial derivatives around a region

Theorem 1. If $\frac{\partial f_i}{\partial x_j}$ all exist on some neighborhood of \vec{a} and are continuous there (neighborhood basically means some small open set ball containing \vec{a} , the f is differentiable at \vec{a} .

Proof. Lemma: If $f: D \to \mathbb{R}^m$ and $f(\vec{a}) = (f_1(\vec{x}), \dots, f_m(\vec{x}))$ then *f* is differentiable at \vec{a} if and only if all f_i are differentiable at \vec{a} . (Left as homework)

For simplicity $n = 2$ by the lemma can just work with single coordinate function, so will take $f : \mathbb{R}^2 \to \mathbb{R}^1$. We will later find out how this generalizes to \mathbb{R}^n . We are assuming that $\frac{\partial f}{\partial x}$ is continuous at \vec{a} . I will write f_x for now, hence, f_x is continuous at \vec{a} and also f_y . So we are trying to show that

$$
\lim_{\vec{h}\to\vec{0}}\frac{f(\vec{a}+\vec{h})-f(\vec{a})-L(\vec{h})}{|\vec{h}|}=\vec{0}
$$

 $L(\vec{h})$ is what we think as the derivative. Here this $L(\vec{h})$ should be the matrix

$$
L = \begin{pmatrix} f_x(\vec{a}) & f_y(\vec{a}) \end{pmatrix}
$$

LHS =
$$
\frac{|f(\vec{a} + \vec{h}) - f(a_1 + h, a_2) + f(a_1 + h_1, a_2) - f(a_1, a_2) - L(h_1, h_2)}{\sqrt{h_1^2 + h_2^2}}
$$

 \Box

Figure 1: Showing continuity through partial derivatives