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Partial derivatives of f at a@ with respect to x; is
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More common notation is %(6) Sometimes you will see
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An example can be f(z,y) = (siny + 22e¥, x + 2zy) where f : R? — R? and we want % at (2,0)7

We can do this on the long way so by definition
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We have a simple single variable derivative.
2+ -4
lim; .o L

t
. 24t+22+t)0—2
limy o P

This just boils down into treating the individual components as individual derivatives.
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These are directional derivative along €1 and é5.

Just doing single variable we can find

7 (2,0)= (‘1*) — D, £(2,0)
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If f is differentiable and df(2,0) is represented by matrix M then
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If f is differentiable at @ then Mz for dfz is

Consider the vertical spanning of this matrix too. We have columns here beware!

If f(a@) is (f1(Q), f2(@), ..., fm(@)) if f is differentiable at @ then
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The ij entry is g£ (@) So f is differentiable at @, then this means f has directional derivatives in all directions of

a, then this also means f has partial derivatives along all n basis directions.

f(z,y) = Vl]zy|

Does not have directional derivatives (wait how why)

Partial derivatives around a region

Theorem 1. If gg ~ all exist on some neighborhood of @ and are continuous there (neighborhood basically means

some small open sJet ball containing @), the f is differentiable at d.

Proof. Lemma: If f: D — R™ and f(d) = (f1(Z),..., fm(Z)) then f is differentiable at @ if and only if all
fi are differentiable at @. (Left as homework)

For simplicity n = 2 by the lemma can just work with single coordinate function, so will take f : R? — R'. We
will later find out how this generalizes to R”. We are assuming that % is continuous at @. I will write f, for
now, hence, f, is continuous at @ and also f,. So we are trying to show that
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L(h) is what we think as the derivative. Here this L(h) should be the matrix

f(@+h) = far + h,az) + f(ar + hi,as) — f(a1,a) — L(hy, hy)
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Figure 1: Showing continuity through partial derivatives



