Honors Multivariable Calculus : : Class 10 (Woohoo!)

January 31, 2024

Ahmed Saad Sabit, Rice University

Definition 1. $f: D \to \mathbb{R}^m$ is differentiable at \vec{a} if for all linear transformation $L: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\vec{L} \to \vec{0}} \frac{|f(\vec{a} + \vec{h}) - f(\vec{a}) - L(\vec{h})|}{|\vec{h}|} = 0$$

If so L is $L = df_{\vec{a}}$ is derivative of f at \vec{a} .

For $f(x,y) = (x-1)^2 - (y+2)^2$ the derivative is going to be like $df_{(0,0)}\begin{pmatrix}p\\q\end{pmatrix}$ is -2p - 2q

Proposition,

Theorem 1. If f is differentiable at \vec{a} then f must be continuous at \vec{a} . **Proof.** Let L be $df_{\vec{a}}$. Then we know that the limit as $h \to 0$, then

$$\frac{|f(\vec{a} + \vec{h}) - f(\vec{a}) - L(\vec{h})|}{|\vec{h}|} = 0$$

We want to show (WTS) that

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = f(\vec{a})$$

Using sequences would be easier, suppose that $\{\vec{x}_k\}$ is a sequence moving towards $\{\vec{a}\}$, let $\vec{h}_k = \vec{x}_k - \vec{a}$. We know that $\{\vec{h}_k\} \to 0$. So,

$$\frac{|f(\vec{a} + \vec{h}_k) - f(\vec{a}) - L(\vec{h}_k)|}{|\vec{h}_k|} \to 0$$

Multiply both sides with the denominator,

$$\vec{h}_k | \frac{|f(\vec{a} + \vec{h}_k) - f(\vec{a}) - L(\vec{h}_k)|}{|\vec{h}_k|} \to 0$$

If norms go to zero then the vectors themselves go to zero.

$$\frac{|f(\vec{a} + \vec{h}_k) - f(\vec{a}) - L(\vec{h}_k)|}{|\vec{h}_k|} = 0$$

Then we have that

$$f(\vec{a} + \vec{h}_k) - f(\vec{a}) - L(\vec{h}_k) \to 0$$

For continuity

$$f(\vec{x}_k) - f(\vec{a}) \to \vec{0}$$
$$L(\vec{h}_k) \to 0$$

Hence

What does L is supposed to mean? Given $L = df_{\vec{a}}$. How should we think about $L(\vec{v})$? Of course $\vec{v} \neq 0$.

 \mathbf{If}

 $\vec{v}\approx 0$

then

$$f(\vec{a} + \vec{v}) - f(\vec{a}) - L(\vec{v}) \approx 0$$

 $L(\vec{v}) \approx \Delta f$

then $L(\vec{v}) \approx f(\vec{a} + \vec{v}) - f(\vec{a})$ and thus

if the change in the input of \vec{v} .

0.1 Thinking about $L(\vec{v})$

Another way to think about $L(\vec{v})$ while $\vec{v} \neq 0$. We want to think of the limit in the definition given above for a particular \vec{h}

$$\lim_{\vec{h} \to \vec{0}} \frac{|f(\vec{a} + \vec{h}) - f(\vec{a}) - L(\vec{h})|}{|\vec{h}|} = 0$$

Here $\vec{v} \in \mathbb{R}^n$. We can think of \vec{h} as scalar multiples of \vec{v} . Consider

 $\vec{h} = t\vec{v}$

We will presume what happens when $t \to 0$.

$$\lim_{t \to 0} \frac{|f(\vec{a} + \vec{v}t) - f(\vec{a}) - tL(\vec{v})|}{|\vec{v}||t|} = 0$$

What we get is,

$$\frac{1}{|\vec{v}|} \lim_{t \to 0} |\frac{f(\vec{a} + t\vec{v}) - f(\vec{a}) - tL(\vec{v})}{t}| = 0$$

$$\lim_{t \to 0} \left| \frac{f(\vec{a} + \vec{vt}) - f(\vec{a})}{t} - L(\vec{v}) \right| = 0$$

This basically means

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = L(\vec{v})$$

Think about the line that stretches along \vec{v} .

$$\lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t} = L(\vec{v})$$

is called the Directional Derivative of f at \vec{a} in the direction \vec{v} .

Theorem 2. Proposition: If $df_{\vec{a}}$ is L then $L(\vec{v})$ is the directional derivative at \vec{a} along \vec{v} and we say

$$D_{\vec{v}}f(\vec{a})$$

Prefer talking about $D_{\vec{v}}f(\vec{a})$ when $|\vec{v}| = 1$. Having a unit vector is professor Wangs preference.

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

It is zero f(0,0) = 0 in such. Let's calculate it's directional derivative.

 $D_{\vec{v}}f(0,0)$

when $\vec{v} = \begin{pmatrix} p \\ q \end{pmatrix}$.

$$\lim_{t \to 0} \frac{f(\vec{0} + \vec{v}t) - f(\vec{0})}{t}$$

$$= \lim_{t \to 0} \frac{f(\binom{tp}{tq}) - 0}{t} = \frac{\frac{t^2 p^2 tq}{t^4 p^4 + t^2 q^2}}{t}$$

$$= \lim_{t \to 0} \frac{p^2 q}{t^2 p^2 + q^2} = \frac{p^2}{q}$$

We can't let $q \neq 0$.

We can't find L at this point to just simply pull a $L\vec{v}$ and get directional derivative. So

Definition 2. The partial derivative, the i-th one of f at \vec{a} is just $D_{\vec{e}_i}f(\vec{a})$ In a particular direction.

In general if we are at \mathbb{R}^m then $D_{\vec{v}}f(\vec{a})$ lives in \mathbb{R}^m .