Honors Multivariable Calculus : : Class 06

January 22, 2024

Ahmed Saad Sabit, Rice University

[Whatever I write inside third brackets are my own weird thoughts and they might not be true]

1 Thinking about Open Sets

Definition 1. Given some $D \subset \mathbb{R}^n$, we say that a point \vec{a} interior of *D* if there $\exists r > 0$ such that $B_r(\vec{a}) \subset D$.

This means the ball around \vec{a} is entirely put inside D . You can go any direction and still be in your domain. Wherever you go, around \vec{a} , but you will stay in *D*. Only interior points of a function are where we are capable of being differentiated.

Definition 2. Proposition: $V \subset \mathbb{R}^n$ is closed iff *V* contains all of it's limit points.

Proof. Suppose *V* is closed. We need to show it contains all of it's limit points. Then let $U = \mathbb{R}^n \setminus V$. So we can show that *U* is open and that contains no limit point of *V* . We only have definition of *S* sets that are open.

Let $\vec{x} \in U$ and we want to show \vec{x} is not a limit point of V. What do we know about \vec{x} if U is open. We can draw a ball and the ball is always inside of *U*. We know $\forall r > 0$ such that $B_r(\vec{x}) \subset U$ so $B_r(\vec{x}) \cap V = \phi$ Proof on the reverse direction:

Suppose *V* is contains all its limit points. We want to show *V* is closed, beispielen we want to show $U := \mathbb{R}^n \setminus V$ is open.

Let \vec{x} is in *U*. Then \vec{x} is not a limit point in *V*. To negate it we need a limit point definition, that there exists an $r > 0$ such that $B_r(\vec{x}) \cap (V \setminus {\vec{x}})$. So $B_r(\vec{x}) \cap V = \phi$, so $B_r(\vec{x}) \subset U$, hence *U* is open. [Negate means what it not means to be a limit points.] П

Definition 3. Proposition: Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Then for all $U \subset \mathbb{R}^m$, the $f^{-1}(u)$ is open in \mathbb{R}^n . *f* might not be a bijection and it is NOT an inverse function beware. Sidebar: if *f* is $f : A \rightarrow B$ and $U \subset B$, then $f^{-1}(u)$ is pre-image of *U* under *f* and that is also $\{a \in A : f(a) \in U\}$

Proof. Let f be continuous and $U \subset \mathbb{R}^m$ be open. We need to show $f^{-1}(u)$ is open, so let $x \in f^{-1}(u)$. Then *f*(\vec{x}) ∈ *U*. Well *U* is open. Since *U* is open, $\forall \epsilon > 0$ such that $B_{\epsilon}(f(\vec{x})) \subset U$. Since *f* is continuous in \vec{x} , we have the limit that works for continuity. So $\forall \delta > 0$ such that if $|\vec{y} - \vec{x}| < \delta$, then $f(\vec{y}) - f(\vec{x}) < \epsilon$. This means that $f(\vec{y})$ is inside the ϵ ball around $f(\vec{x})$ which is $\subset U$. So $\vec{y} \in f^{-1}(u)$. This shows,

$$
B_{\delta}(\vec{x}) \subset f^{-1}(u)
$$

[For it to be open we need to show the ball around \vec{x} is existant].

 \Box

Definition 4. Proposition: $f: \mathbb{R}^n \to \mathbb{R}^m$ if $\forall U \subset \mathbb{R}^m$, we have $f^{-1}(u)$ is open in \mathbb{R}^n . Then *f* is continous.

Proof. Exercise lol

Definition 5. *V* $\subset \mathbb{R}^n$ is bounded if $\exists r > 0$ such that $V \subset B_r(\vec{0})$.

Definition 6. $^* V \subset \mathbb{R}^n$ is compact if *V* is closed and bounded.

We can have infinitely many \vec{x} but still be careful about the boundary of this region. Any random \vec{a} can have a ball that contains the whole set, this \vec{a} can be anywhere. So we just pick up $\vec{0}$ to be the point of interest.

 \Box

Figure 2: Beware, a set can have infinite points but the bound is kind of not infinite.