Honors Multivariable Calculus : : Class 04

January 17, 2024

Ahmed Saad Sabit, Rice University

Forward direction was proved in last class.

$$
\lim_{\vec{x}\to\vec{a}}f(\vec{x})=\vec{L}
$$

if and only if \forall sequence $\{x_k\}$ with $\vec{x}_k \rightarrow \vec{a}$ (but not equal) we have $\{f(\vec{x})\} \rightarrow \vec{L}$.

Proof. Let's prove the statement in reverse. Let's assume the limit is not \overline{L} . Suppose

$$
\lim_{\vec{x}\to\vec{a}}f(\vec{x})\neq\vec{L}
$$

We will put our limit definition to work. Then $\forall \epsilon > 0$ such that $\forall \delta > 0$.

There exists \vec{x} not equal ot \vec{a} , such that $|\vec{x} - \vec{a}| < \delta$ but $|f(\vec{x})| \to \vec{L} \geq \epsilon$

There is an ϵ around \vec{L} , that no matter what δ (which is around \vec{x}), there is an \vec{x} is within this periphery of δ , but doing the mapping the $f(\vec{x})$ ends up being outside of the ϵ ball.

How to get a sequence out of this? ϵ is fixed but δ is anything above 0.

For any $k \in \mathbb{Z}^+$, letting δ as $\frac{1}{k}$, we can find \vec{x}_k satisfying,

$$
|\vec{x}-\vec{a}|<\frac{1}{k}
$$

But $f(\vec{x}_k) - \vec{L}$ is still outside of ϵ ball. $(|f(\vec{x}_k) - \vec{L}| \geq \epsilon)$. Now we have sequence $\{\vec{x}_k\}$ which converges to \vec{a} and we have the sequence $f(\vec{x}_k)$ of this thing which never gets within the ϵ of \vec{L} , so it doesn't converge. \Box

Ruden Analysis for more, Davidson and Donnsig.

How can we describe $f(x) = \sqrt{x}$ if we want to solve for $\lim_{x\to 0} f(x)$. Domain in multivariable can look weird,

First we need to define what points are legitimate to take a limit off? This is the valid inputs that we can give our function to throw out $f(\vec{x})$.

Another examples, let's say our domain is Z in R. Does it make sense to take a limit? Taking a limit towards 2 doesn't make sense because though 2 is in the domain it is we are not really intreested in $x = 2$.

Definition 1. If $D \subset \mathbb{R}^n$, we say that $\vec{a} \in \mathbb{R}^n$ is a limit point of *D* if you can go arbitrarily close to \vec{a} without equalling \vec{a} itself. Hence, if $\forall \epsilon > 0$ that $\exists \vec{x} \in D$ without $\vec{x} \neq \vec{a}$ but $|\vec{x} - \vec{a}| < \epsilon$. Or you can say, for $\forall \epsilon > 0$, $B_{\epsilon}(\vec{a})$ contains a point in *D* that is not \vec{a} itself.

$$
B_{\epsilon}(\vec{a}) \cap (D \smallsetminus \{\vec{a}\}) \neq \phi
$$

Talk about limits if the domain is \mathbb{O} in \mathbb{R} . What does it mean to take a limit in such case?

Definition 2. Now

 $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$

Figure 1: domain problem in multivariable calculus

and \vec{a} is a limit point in D , then,

$$
\lim_{\vec{x}\to\vec{a}}f(\vec{x})=\vec{L}
$$

and $\vec{x} \subset D$, everything else is the same as the definition we did before. We are interested in the intersection of the ball and the domain.