Honors Multi Variable Calculus Class 02

January 10, 2024

Ahmed Saad Sabit

Note Because I have not made an example environment hence I will keep them in the problem environment.

Theorem 1. This

Definition 1. This

Problem 1. this

Solution. This

1 Definition of the Limit $\epsilon - \delta$ rule

We had come across definition of limits pretty late. I remember reading this on the Complex Analysis by Serge Lang. We will use the formal definition of the limit.

Definition 2. Formal definition of limits goes like $\lim_{x\to a} f(x) = L$ for $\forall \epsilon > 0$ we have $\exists \delta > 0$ such that if $|x - a| < \delta$ where $x \neq a$, then $|f(x) - L| < \epsilon$.

$$
\lim_{x \to a} f(x) = L; \forall \epsilon > 0, \exists \delta > 0,
$$

We are currently talking about choosing the appropriate δ or ϵ to solve the problem.

Problem 2. $f : \mathbb{R} \to \mathbb{R}$, the Dirichlet goes like,

 $f(x) = 1$

If *x* is rational.

 $f(x) = 0$

If *x* is irrational. Now what is the $\lim_{x\to 0} f(x)$?

Solution. There is no limit. We can prove $f(x)$ is not 1 by saying the definition of limit is not working here. Negation would go like there exists $\epsilon > 0$ we have $\forall \delta > 0$, there exists *x* such that $|x-a| < \delta$ but $|f(x)-L| \geq \epsilon$. The professor goes on to choose $\epsilon = \frac{1}{2}$, no matter what we take δ to be, as long as $\delta > 0$, but we are trying to show that there is an *x* in this δ range where $f(x)$ is too far from *L*.

We can find some *x* which is irrational between 0 and δ . So $|x-0| < \delta$ but $f(x) = 0$ so $|f(x) - 1| > \epsilon$. \Box

 \Box

You can prove that two different limits at the same point. Interesting!

Problem 3.

$$
\lim_{x \to 1} x^2 + 2x = 3
$$

Proof. Let $\epsilon > 0$, we choose δ ?

We have to do some scratch work before we decide what we want to be *δ*.

We want to get $|x^2 + 2x - 3| < \epsilon$. Where $|x - 1|$ is small enough. We need to figure out what small enough is. We can do this,

 $|x^2-1+2x-2| = |(x-1)(x+1)+2(x-1)| \le |(x-1)(x+1)| + |2(x-1)|$

So both terms being $\frac{\epsilon}{2}$ gives us the total ϵ . Let's try something like both two terms of the last equation to be $\lt \frac{\epsilon}{2}$. This condition can be filled by,

$$
2(x-1) < \frac{\epsilon}{2}
$$

For which we have $x - 1 < \frac{\epsilon}{4}$. For the first term we now just consider $|x-1| < 1$, then $|x+1| < 3$, and from here,

$$
|(x-1)(x+1)| < 3|x-1|
$$

And this will be $\langle \frac{\epsilon}{2} \text{ if } |x-1| \langle \frac{\epsilon}{6} \rangle$. Now put all the three bounds for ϵ together, then, choosing $\delta = \min(1, \frac{\epsilon}{6})$. We are flexible, we can just come up with any delta that works and that is enough. **So starting formally,** $\epsilon > 0$, we choose $\delta = \min\left(\frac{\epsilon}{6}, 1\right)$, then if $|x - 1| < \delta$, then we know,

$$
|x - 1| < 1, 0 < x < 2, |x + 1| < 3
$$

So, $|(x-1)(x+1)| < \frac{\epsilon}{6} \cdot 3 = \frac{\epsilon}{2}$. Also $|2(x-1)| = 2|x-1| ≤ 2 \cdot \frac{\epsilon}{6} \frac{\epsilon}{3} < \frac{\epsilon}{2}$. Hence, $|x^{2} + 2x - 3| \leq |(x - 1)(x + 1)| + |2(x - 1)| < \frac{\epsilon}{2}$ $\frac{\epsilon}{2} + \frac{\epsilon}{2}$ $\frac{6}{2} = \epsilon$

So, how does this extend to multivariable?

2 For multi variables?

What should happen for multi-variable function?

$$
f:\mathbb{R}^2\to\mathbb{R}
$$

Or what should mean,

$$
\lim_{(x,y)\to(1,4)} f(x,y) = 5
$$

Intuitively, as (x, y) goes closer to $(1, 4)$, the output gets closer and closer to 5. The same definition holds, but we just want the distance of (x, y) from the limit instead of $|x - a|$ (where *a* is limit) to be lower than a bound δ .

You can still use something like,

$$
\lim_{\vec{x}\to\vec{a}}f(\vec{x})=\vec{L}
$$

It's still exactly the same thing, still!

Figure 1: For the 2 Dimensional case the above figure is something like

Problem 4.

$$
\lim_{x,y \to 1,2} x + y = 3
$$

Proof. Let $\epsilon > 0$, we pick a δ . Scratch work,

$$
|x+y-3| < \epsilon
$$

So,

$$
|x - 1 + y - 2| \le |x - 1| + |y - 2|
$$

Set each terms to be lower than $\frac{\epsilon}{2}$. Then,

$$
|x - 1 + y - 2| \le \epsilon
$$

We want the distance to be lower than δ , hence,

$$
\sqrt{(x-1)^2 + (y-2)^2} < \delta
$$

But using flexibly,

$$
|x-1|<\delta
$$

And

 $|y - 2| < \delta$

We want both of these terms to be lower than $\frac{\epsilon}{2}$, so just consider δ to be lower than $\frac{\epsilon}{2}$. Yay! **Formally**, setting $|(x, y) - (1, 2)| < \delta = \frac{\epsilon}{2}$, we have set this. Hence both being smaller than

$$
|x+y-3| < \epsilon
$$

 \Box

Figure 2: For the last problem the adjoined diagram